Spatio-temporal variability of farmland soil organic matter and total nitrogen in the southern Loess Plateau, China: a case study in Heyang County

2015 ◽  
Vol 75 (1) ◽  
Author(s):  
Tao Chen ◽  
Qingrui Chang ◽  
Jing Liu ◽  
Jan G. P. W. Clevers
2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 645 ◽  
Author(s):  
Hao Chen ◽  
Yuhua Bai ◽  
Qingjie Wang ◽  
Fu Chen ◽  
Hongwen Li ◽  
...  

Challenges for dryland farming on the Loess Plateau of China are continuous nutrient loss, low soil organic matter and crop yield, and soil degradation. Controlled traffic, combined with zero or minimum tillage and residue cover, has been proposed to improve soil structure and crop yield. From 1998 to 2006, we conducted a field experiment comparing soil organic matter and wheat productivity between controlled traffic and conventional tillage farming systems. The field experiment was conducted using 2 controlled traffic treatments (zero tillage with residue cover and no compaction, shallow tillage with residue cover and no compaction) and a conventional tillage treatment. Results showed that controlled traffic treatments significantly increased soil organic matter and microbial biomass in the 0–0.30 m soil profile. Controlled traffic with zero tillage significantly increased total N in the 0–0.05 m soil profile. The mean yield over 8 years of controlled traffic treatments was >10% greater than that of conventional tillage. Controlled traffic farming appears to be a solution to the cropping problems faced on the Loess Plateau of China.


Sign in / Sign up

Export Citation Format

Share Document