scholarly journals Comment on “Hydrochemical studies of Cross River Basin (southeastern Nigeria) river systems using cross plots, statistics and water quality index” published in Environ. Earth Sci. (2013) 70:3043–3056

2016 ◽  
Vol 75 (8) ◽  
Author(s):  
Moslem Sharifinia
2018 ◽  
Vol 11 (2) ◽  
pp. 653-660 ◽  
Author(s):  
P. S.Bytyçi1 ◽  
H. S. Çadraku ◽  
F. N. Zhushi Etemi ◽  
M. A. Ismaili ◽  
O. B. Fetoshi ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 1668 ◽  
Author(s):  
Daissy Milena Díaz-Casallas ◽  
Mario Fernando Castro-Fernández ◽  
Elvira Bocos ◽  
Carlos Enrique Montenegro-Marin ◽  
Rubén González Crespo

This article provides a deep analysis of the water quality at the upper basin of the Bogota River (Colombia) between 2008 and 2017. The Water Quality Index has been the indicator employed to determine the ecological status of the river. This index was chosen in order to normalize the analysis, given that it is commonly used by the Institute of Hydrology, Meteorology and Environmental Studies, a government agency of the Ministry of Environment and Sustainable Development of Colombia, to determine the state of surface effluents. The results obtained were organized in a double-entry matrix in order to relate the variables of the sample period and the sampling station. The research revealed an insufficient quality of water, demonstrating that the high stretch of the Bogota River basin has, in general, regular or acceptable water quality, while only five stations showed an acceptable status. Surprisingly, the stations located close to the wastewater treatment plants of the municipalities of Choconta, Suesca, Gachancipa, and Tocancipa, as well as Rio Negro, have a poor water quality, discharging a high load of contaminants into the river. Although great efforts have been made by Colombian authorities to restore the critical state of the majority of their aquatic ecosystems, recent implementation of policies and instruments have not shown significant achievements yet. For this reason, this study aims to present a powerful decision-tool for the monitoring and evaluation of correction measures implemented on this river basin. The data used in this research were provided by the Regional Autonomous Corporation of Cundinamarca.


2012 ◽  
Vol 599 ◽  
pp. 237-240 ◽  
Author(s):  
Faridah Othman ◽  
Mohamed Elamin Alaa Eldin

The Klang river basin is located within the state of Selangor and Kuala Lumpur, Malaysia. The Klang River drains an area of 1,288 km2 from the steep mountain rain forests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, covering a distance of 120 km. It originates from the northern part of Selangor, drains the Klang Valley, and finally discharges itself into the Straits of Malacca. The pollution discharges for various locations along the river basin was obtained from the Water Quality and GIS group. The pollutants can come from point sources (PS) such as industrial wastewater, municipal sewers, wet market, sand mining and landfill. Pollutants can also come from non-point sources (NPS) such as agricultural or urban runoff, and commercial activity such as forestry, and construction due to rainfall event. Mathematical–computational modeling of river water quality is possible but requires an extensive validation. Besides it requires previous knowledge of hydraulics and hydrodynamics. To overcome these difficulties, a water quality index (WQI) was developed. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number. The purpose of this research is to classify the upstream and downstream of the Klang main river based on WQI value.


Sign in / Sign up

Export Citation Format

Share Document