Effect of Deep Cryogenic Treatment on Wear Resistance of AISI 52100 Bearing Steel

2014 ◽  
Vol 67 (6) ◽  
pp. 909-917 ◽  
Author(s):  
Ibrahim Gunes ◽  
Adem Cicek ◽  
Kubilay Aslantas ◽  
Fuat Kara
Author(s):  
Idayan A ◽  
C. Elanchezhian ◽  
B. Vijaya Ramnath ◽  
Palanikumar K

In this research work, two types of cryogenic treatment such as deep cryogenic treatment (-196oC) and shallow cryogenic treatment (-80oC) have been adopted for wear resistance to increase in AISI 440C bearing steel. This paper has been focused to increase Wear Resistance (WR) through deep micro structural analyses, and also attention has been made to correlate the microstructure with the wear character of Deep Cryogenic treated (DCT) specimens, Conventional Heat Treated (CHT) specimens and Shallow Cryogenic Treated (SCT) specimens. Micro structural examinations have been carried out in the specimens through Scanning Electron Microscopy (SEM), Energy Dispersive Analysis of X-ray (EDAX) and X-Ray Diffraction (XRD). Wear characteristics of AISI 440C bearing steel has been studied. The outcome of the research disclosed that the DCT specimens have higher wear resistance than SCT and CHT specimens. The effective wear mechanisms recognized were the constitution of white layers and delamination of white layers. The microstructures of the materials have been varied through heat treatment process. The modification of Secondary Carbides (SCs) precipitation characteristics and its reduction of retained austenite in the microstructure have been correlated with wear character and these are the liable mechanism to raise the wear resistance of bearing steels through DCT.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1257-1263
Author(s):  
Cosme Roberto Moreira Silva ◽  
Tiago F.O. Melo ◽  
José A. Araújo ◽  
J.L.A. Ferreira ◽  
S.J. Gobbi

Wear resistance of tool steels can be increased with deep cryogenic treatment (DCT) application. Mechanisms related to DCT are still not completely understood. Microabrasive wear resistance of cryogenically treated samples of AISI D2 steel was evaluated in terms of austenitization temperature at heat treatment cycle and quenching steps related to DCT. X-ray difractometry, scanning and optical microscopy and quantitative evaluation of carbides with image analysis were carried out aiming material characterization. For samples subjected to higher austenitization temperatures, the DCT treatment does not increase abrasive wear resistance. For samples treated at lower austenitization temperature, the DCT treatment results on 44% increase at abrasive resistance. This effect is correlated to the increase of the amount of fine carbides distributed at samples matrices cryogenically treated.


2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2019 ◽  
Vol 36 (2) ◽  
pp. 206-215 ◽  
Author(s):  
Zhaobing Cai ◽  
Ran Chen ◽  
Jianguo Qian ◽  
Shujing Zheng ◽  
Shengyu Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document