Investigation on the Effect of Torch Angle on the Formability of AA5052 CMT Weldments

2019 ◽  
Vol 72 (6) ◽  
pp. 1551-1555 ◽  
Author(s):  
B. Girinath ◽  
N. Siva Shanmugam ◽  
K. Sankaranarayanasamy
Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Tianqi Li ◽  
Yingying Zhang ◽  
Lei Gao ◽  
Yunhao Zhang

This study presents the Taguchi design method with L9 orthogonal array which was carried out to optimize the flux-cored arc welding (FCAW) process parameters such as welding current, welding voltage, welding speed, and torch angle with reference to vertical for the ferrite content of duplex stainless steel (DSS, UNS S32205) welds. The analysis of variance (ANOVA) was applied, and a mathematical model was developed to predict the effect of process parameters on the responses. The results indicate that welding current, welding voltage, welding speed, torch angle with reference to vertical, and the interaction of welding voltage and welding speed are the significant model terms connected with the ferrite content. The ferrite content increases with the increase of welding speed and torch angle with reference to vertical, but decreases with the increase of welding current and welding voltage. Through the developed mathematical model, the target of 50% ferrite content in weld metal can be obtained when all the welding parameters are set at the optimum values. Finally, in order to validate experimental results, confirmation tests were implemented at optimum working conditions. Under these conditions, there was good accordance between the predicted and the experimental results for the ferrite content.


2013 ◽  
Vol 139 (9) ◽  
pp. 1268-1277 ◽  
Author(s):  
S. Parvez ◽  
M. Abid ◽  
D. H. Nash ◽  
H. Fawad ◽  
A. Galloway

2002 ◽  
Vol 20 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Shizuo UKITA ◽  
Tomoki MASUKO ◽  
Kunio KOKUBO
Keyword(s):  

Author(s):  
Chuanchu Su ◽  
Xizhang Chen

Purpose This paper aims to mainly report the impact of torch angle on the dynamic behavior of the weld pool which is recorded and monitored in real time with the aid of a high-speed camera system. The influence of depositing torch angle on the fluctuation behavior of weld pool and the quality of weld formation are compared and analyzed. Design/methodology/approach The FANUC controlled robotic manufacturing system comprised a Fronius cold metal transfer (CMT) Advanced 4000R power source, FANUC robot, water cooling system, wire feeding system and a gas shielding system. An infrared laser was used to illuminate the weld pool for high-speed imaging at 1,000 frames per second with CR600X2 high-speed camera. The high-speed camera was set up a 35 ° angle with the deposition direction to investigate the weld pool flow patterns derived from high-speed video and the effect of torch angles on the first layer of wire additive manufacture-CMT. Findings The experimental results demonstrated that different torch angles significantly influence on the deposited morphology, porosity formation rate and weld pool flow. Originality/value With regard to the first layer of wire arc additive manufacture of aluminum alloys, the change of torch angle is critical. It is clear that different torch angles significantly influence on the weld morphology, porosity formation and weld pool flow. Furthermore, under different torch angles, the deposited beads will produce different defects. To get well deposited beads, 0-10° torch could be made away from the vertical position of the deposition direction, in which the formation of deposited beads were well and less porosity and other defects.


2020 ◽  
Vol 23 (2) ◽  
pp. 16-20
Author(s):  
Vinayak Mehra ◽  
◽  
Varun Gupta ◽  
Pradeep Khanna ◽  
◽  
...  

In present research, mathematical models have been established to predict the angular distortion in Metal Inert Gas(MIG) welding for 6mm plates of SS 202 grade for butt welded joints. The filler metal used was a continuously fed solid metal wire of stainless steel (304L).100% Argon gas was used to serve the purpose of shielding the weld pool from the atmosphere as it does not dissociate at high temperatures. This prevented any turbulence in the welding arc and deterioration in weld quality. To obtain experimental samples, the design matrix was developed using the statistical technique of central composite rotatable design (CCRD). Analysis of Variance (ANOVA) technique was used for the adequacy check of the models developed. The models developed can be used to find direct and interaction effect of the input parameters, namely welding speed (WS), voltage (V), nozzle to plate distance (NPD), torch angle (Ɵ) and wire feed rate (WFR) on the angular distortion.


Author(s):  
Yifeng Li ◽  
Xunpeng Qin ◽  
Qiang Wu ◽  
Zeqi Hu ◽  
Tan Shao

Purpose Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the potential of 6-DOF industrial robots and improve the power of additive manufacturing, this paper aims to present a method to fabricate curved overhanging thin-walled parts free from turn table and support structures. Design/methodology/approach Five groups of straight inclined thin-walled parts with different angles were fabricated with the torch aligned with the inclination angle using RWAAM, and the angle precision was verified by recording the growth of each layer in both horizontal and vertical directions; furthermore, the experimental phenomena was explained with the force model of the molten pool and the forming characteristics was investigated. Based on the results above, an algorithm for fabricating curved overhanging thin-walled part was presented and validated. Findings The force model and forming characteristics during the RWAAM process were investigated. Based on the result, the influence of the torch orientation on the weld pool flow was used to control the pool flow, then a practical algorithm for fabricating curved overhanging thin-walled part was proposed and validated. Originality/value Regarding the fabrication of curved overhanging thin-walled parts, given the influences of the torch angles on the deposited morphology, porosity formation rate and weld pool flow, the flexibility of 6-DOF industrial robot was fully used to realize instant adjustment of the torch angle. In this paper, the deposition point and torch orientation of each layer of a robotic fabrication path was determined by the contour equation of the curve surface. By adjusting the torch angle, the pool flow was controlled and better forming quality was acquired.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1355
Author(s):  
Miroslav Randić ◽  
Duško Pavletić ◽  
Goran Turkalj

To avoid the occurrence of surface cracks at the welds, it is important to lower the stress concentration in the zone of the weld face by an appropriate choice of parameters. A plethora of experiments was conducted varying four welding techniques. The welded samples were scanned with 3D scanners and the toe radius was measured on each sample. The significance of the obtained results was analyzed using Pareto diagrams. The experiment results analysis shows that the length of the electrode stick-out has a significant influence on the toe radius, while the shielding gas has a great effect on the toe radius. Moreover, with the analysis of results obtained by experiments it was proved that the interaction of the torch angle and the number of cover passes, as well as that of the torch angle and the shielding gas, has a significant influence on the toe radius.


2016 ◽  
Vol 842 ◽  
pp. 288-292
Author(s):  
Tien Duong Nguyen

The green technology is applied in training welders by using simulation equipment. The virtual tungsten inert gas welding (TIG welding) equipment permits of reducing the cost of welding practice training by saving on materials, electricity. It does not cause the environmental pollution. It is not harmful to welding learners. This paper studies on the permissible range of technological and technical parameters of TIG welding process. This is basis to develop the software in order to evaluate learners on virtual TIG welding equipment. These are foundations to manufacture the virtual TIG welding equipment. This equipment allows welding learners to practice the basic operations and skills as on real TIG welding machine, including the techniques of striking the arc, restarting the arc, maintenance of arc length, controlling of torch angle, filler rod angle, the operations of torch move, filler rod move,... with different welds and different positions


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Senchang Chen ◽  
Yanhui Chi ◽  
Ping Zhang ◽  
Yusheng Shi

A mechanism to reduce the porosity by changing the arc angle during aluminum alloy welding was studied. Industrial computed tomography was used to scan the welds with different arc angles, and the scanned model was processed by a specific software package to obtain the digital size and position of weld pores. The forces acting on the pores in the molten pool explained the test results that the number of pores decreases and the average size increases. As the inclination angle of the arc increased, the vertical component that prevented the bubble from rising decreased, and the horizontal component that pushed the molten metal flow and promoted the nucleation and growth of the bubbles increased. A horizontal movement during the droplet transition as the arc inclination was produced, which was conducive to the growth and overflow of bubbles. The theoretical analysis and temperature field measured by a far-infrared with different torch angle showed that when the arc was tilted from 0, the shape of the molten pool changed from the circle to the ellipse. The long axis of the ellipse increased as the bevel angle of the arc increased. This showed that the molten metal existed a longer time for the bubbles to escape from the molten pool when the angle of the arc increased. The paper provides fundamental insights into a mechanism for porosity reduction during the welding of Al alloys.


Sign in / Sign up

Export Citation Format

Share Document