Peristaltic Transport of Nanofluid in a Vertical Porous Stratum with Heat Transfer Effects

2018 ◽  
Vol 9 (1) ◽  
pp. 117-130
Author(s):  
A. N. S. Srinivas ◽  
C. Haseena ◽  
S. Sreenadh
2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
E. Abo-Eldahab ◽  
E. Barakat ◽  
Kh. Nowar

The influences of Hall currents and heat transfer on peristaltic transport of a Newtonian fluid in a vertical asymmetric channel through a porous medium are investigated theoretically and graphically under assumptions of low Reynolds number and long wavelength. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Analytical solutions have been obtained for temperature, axial velocity, stream function, pressure gradient, and shear stresses. The trapping phenomenon is discussed. Graphical results are sketched for various embedded parameters and interpreted.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Kai-Long Hsiao

A magnetic hydrodynamic (MHD) of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric numberE1couple with magnetic parameterMto represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values off''(0)andθ'(0)have been carried out. The parameter Pr,E1, orEccan increase the heat transfer effects, but the parameterMorA*may decrease the heat transfer effects.


Sign in / Sign up

Export Citation Format

Share Document