Starch content and cassava mosaic disease genetic diversity with relation to yield in south Indian cassava (Manihot esculenta Crantz) germplasm

2011 ◽  
Vol 14 (3) ◽  
pp. 179-189 ◽  
Author(s):  
Raghu Duraisamy ◽  
Sakthi Ambothi Rathinasamy ◽  
Senthil Natesan ◽  
Raveendran Muthurajan ◽  
Jana Jeevan Ramineni ◽  
...  
2015 ◽  
Vol 72 (6) ◽  
pp. 520-527 ◽  
Author(s):  
Cátia Dias do Carmo ◽  
Maiane Suzarte da Silva ◽  
Gilmara Alvarenga Fachardo Oliveira ◽  
Eder Jorge de Oliveira

2021 ◽  
Vol 66 (3) ◽  
pp. 170-179
Author(s):  
Sengsoulichan Dethvongsa ◽  
Vu Nguyen Anh ◽  
Van Tran Khanh

RAPD (Randomly Amplified Polymorphic DNA) is an indicator for high and stable polymorphism, widely used in the study of the diversity of cassava. In this paper, the results of using 20 polymorphic primers OPK combined with the establishment of the phylogenetic tree to analyze the genetic diversity of 26 cassava varieties with different responses to waterlogging conditions by using the RAPD-PCR technique were presented. The purpose of this experiment was to show the genetic relevance of the studied cassava varieties. The results showed that the flood tolerance of cassava was not related to the polymorphism and branching characteristics of the stem. This information may be use as a basis for selecting flood-tolerant cassava varieties for cassava production, as well as the basis for selecting genetically different parents for breeding.


2016 ◽  
Vol 10 (1) ◽  
pp. 63-70
Author(s):  
Palupi Puspitorini ◽  
Dyah Pitaloka ◽  
Tri Kurniastuti

This study aims to find out the results of cassava tuber crop UJ5 variety at different harvest ages. Research direction is that cassava varieties have been planted throughout Indonesia as the best producer of cassava varieties. High levels of starch and high HCN content makes this variety was selected by the factory - tapioca factory in Indonesia. Research design used randomized block design with 7 treatments of harvesting (UP) were repeated 3 times. UP6 (harvesting 6 MAP), UP7 (harvesting 7 MAP), UP8 (harvesting 8 MAP), UP9 (harvesting 9 MAP), UP10 (harvesting 10 MAP), UP11 (harvesting 11 MAP), UP12 ( harvesting 12 MAP). The research variables are the fresh weight of tuber, tuber starch content (%), the weight of biomass, harvest index, number of tubers per plant. The results showed that the best harvesting time is UP9 the results did not differ with UP10, UP11 and UP12


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1820
Author(s):  
Warren Freeborough ◽  
Nikki Gentle ◽  
Marie E. C. Rey

Among the numerous biological constraints that hinder cassava (Manihot esculenta Crantz) production, foremost is cassava mosaic disease (CMD) caused by virus members of the family Geminiviridae, genus Begomovirus. The mechanisms of CMD tolerance and susceptibility are not fully understood; however, CMD susceptible T200 and tolerant TME3 cassava landraces have been shown to exhibit different large-scale transcriptional reprogramming in response to South African cassava mosaic virus (SACMV). Recent identification of 85 MeWRKY transcription factors in cassava demonstrated high orthology with those in Arabidopsis, however, little is known about their roles in virus responses in this non-model crop. Significant differences in MeWRKY expression and regulatory networks between the T200 and TME3 landraces were demonstrated. Overall, WRKY expression and associated hormone and enriched biological processes in both landraces reflect oxidative and other biotic stress responses to SACMV. Notably, MeWRKY11 and MeWRKY81 were uniquely up and downregulated at 12 and 67 days post infection (dpi) respectively in TME3, implicating a role in tolerance and symptom recovery. AtWRKY28 and AtWRKY40 homologs of MeWRKY81 and MeWRKY11, respectively, have been shown to be involved in regulation of jasmonic and salicylic acid signaling in Arabidopsis. AtWRKY28 is an interactor in the RPW8-NBS resistance (R) protein network and downregulation of its homolog MeWRKY81 at 67 dpi in TME3 suggests a negative role for this WRKY in SACMV tolerance. In contrast, in T200, nine MeWRKYs were differentially expressed from early (12 dpi), middle (32 dpi) to late (67 dpi) infection. MeWRKY27 (homolog AtWRKY33) and MeWRKY55 (homolog AtWRKY53) were uniquely up-regulated at 12, 32 and 67 dpi in T200. AtWRKY33 and AtWRKY53 are positive regulators of leaf senescence and oxidative stress in Arabidopsis, suggesting MeWRKY55 and 27 contribute to susceptibility in T200.


Plant Disease ◽  
1999 ◽  
Vol 83 (4) ◽  
pp. 398-398 ◽  
Author(s):  
F. O. Ogbe ◽  
G. I. Atiri ◽  
D. Robinson ◽  
S. Winter ◽  
A. G. O. Dixon ◽  
...  

Cassava (Manihot esculenta Crantz) is an important food crop in sub-Saharan Africa. One of the major production constraints is cassava mosaic disease caused by African cassava mosaic (ACMV) and East African cassava mosaic (EACMV) begomoviruses. ACMV is widespread in its distribution, occurring throughout West and Central Africa and in some eastern and southern African countries. In contrast, EACMV has been reported to occur mainly in more easterly areas, particularly in coastal Kenya and Tanzania, Malawi, and Madagascar. In 1997, a survey was conducted in Nigeria to determine the distribution of ACMV and its strains. Samples from 225 cassava plants showing mosaic symptoms were tested with ACMV monoclonal antibodies (MAbs) in triple antibody sandwich enzyme-linked immunosorbent assay (1). Three samples reacted strongly with MAbs that could detect both ACMV and EACMV. One of them did not react with ACMV-specific MAbs while the other two reacted weakly with such MAbs. With polymerase chain reaction (2), the presence of EACMV and a mixture of EACMV and ACMV in the respective samples was confirmed. These samples were collected from two villages: Ogbena in Kwara State and Akamkpa in Cross River State. Co-infection of some cassava varieties with ACMV and EACMV leads to severe symptoms. More importantly, a strain of mosaic geminivirus known as Uganda variant arose from recombination between the two viruses (2). This report provides evidence for the presence of EACMV in West Africa. References: (1) J. E. Thomas et al. J. Gen. Virol. 67:2739, 1986. (2) X. Zhou et al. J. Gen. Virol. 78:2101, 1997.


Author(s):  
L. Pugalendhi ◽  
M. Velmurugan ◽  
P. S. Kavitha ◽  
M. K. Kalarani ◽  
N. Senthil ◽  
...  

The cassava variety YTP2 (Me 681) has been developed through selection from Thondamuthur type at Tapioca and Castor Research Station, TNAU, Yethapur. The performance of YTP2 in the Adaptive Research Trial (ART) and On Farm Trial (OFT) in the farmer’s field inferred that this new variety is well adapted to cassava growing districts of Tamil Nadu. In addition to the above, YTP2 was found to be resistant to cassava mosaic disease incidence (CMD). Plants are erect, medium growing and non-branching type and suitable for growing under irrigated and rainfed conditions. The internodal length is shorter and the leaf size is medium with sufficient canopy. The leaves of the plants droop down to reduce the transpiration loss which is more advantageous to overcome or escape from drought and heat stress during summer season. It is a dual purpose variety wherein the tubers contain high starch content which is much favourable for the manufacture of starch, sago and also suited for table purpose. The overall performance of this variety showed higher tuber yield (42.20 t ha-1) and starch content (28.40%) which is 15.94% and 18.20% increase over the check varieties YTP1 and H226 respectively. The results of DNA fingerprint data involving SSR markers (SSRY235, NS169 and NS928) showed that it is genetically distinct from the existing commercial varieties viz., YTP1, H226 and Sree Athulya.


Sign in / Sign up

Export Citation Format

Share Document