Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime

2013 ◽  
Vol 49 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Sun-Seon Lee ◽  
Ye-Won Seo ◽  
Kyung-Ja Ha ◽  
Jong-Ghap Jhun
2011 ◽  
Vol 24 (15) ◽  
pp. 4073-4095 ◽  
Author(s):  
Jessica L. Conroy ◽  
Jonathan T. Overpeck

Abstract The spatial domain of the Asian monsoon has been defined by the intensity, seasonal concentration, and annual range of precipitation. Monsoon subdomains, such as the Indian monsoon, East Asian monsoon, and western North Pacific monsoon, have also been identified based on seasonal wind reversals as well as the timing and source of monsoon moisture. However, precipitation across the Asian monsoon region is heterogeneous and spatially complex and may have influences farther north than commonly assumed, particularly if scientists consider records of past variability spanning the current interglacial period. This paper presents an additional means of identifying the Asian monsoon domain and monsoon subsystems using an empirical orthogonal function (EOF)-based regionalization of gridded precipitation values. Regions of unique precipitation variability for the Asian monsoon region are determined using monthly precipitation anomalies from the Climate Prediction Center Merged Analysis of Precipitation (CMAP) gridded precipitation dataset from 1979 to 2009. From these regions, an area of Asian monsoon influence extending from the Arabian Sea eastward to the western North Pacific Ocean is defined, similar to other studies. One key difference is that this region of monsoon influence penetrates farther north into the Tibetan Plateau and northern China. Thus, paleoclimate observations of wetter conditions in these northern arid regions may suggest an intensification of monsoon moisture, rather than a northward shift in the boundary of the monsoon. In contrast, the Arabian Peninsula, largely removed from monsoon precipitation today, likely saw a shift of monsoon influence inland earlier in the Holocene. Also identified are different subdomains of distinct precipitation variability in southeastern Asia, the western North Pacific, and the East Asian monsoon region of northeastern China that agree with previous studies. Not identified in the paper is a single Indian summer monsoon region. Instead, the Arabian Sea was found to have unique precipitation variability relative to the Indian subcontinent. Summers with enhanced precipitation over the Arabian Sea coincide with decreased summer precipitation in the western North Pacific. This relationship is likely a result of the El Niño–Southern Oscillation (ENSO)-induced development of the Philippine Sea anticyclone. Local and remote sea surface temperatures were generally found to covary with regional precipitation, but not all regions respond similarly to the remote climate variability associated with ENSO. There is some evidence that the EOF-defined regions were stable … through the Holocene, although additional regionalization analyses of paleorecords and model simulations of past precipitation variability are needed to reconstruct past regions of coherent precipitation variability.


2021 ◽  
Author(s):  
Xin Zhou ◽  
et al.

Supplemental information on the records used, the chronological framework of different sites, reconstructions of precipitation changes, and the defined time of the Holocene monsoon precipitation maximum.<br>


2020 ◽  
Vol 6 (46) ◽  
pp. eabc2414
Author(s):  
Yichao Wang ◽  
Huayu Lu ◽  
Kexin Wang ◽  
Yao Wang ◽  
Yongxiang Li ◽  
...  

East Asian monsoon variability in the Pliocene warm world has not been sufficiently studied because of the lack of direct records. We present a high-resolution precipitation record from Pliocene fluvial-lacustrine sequences in the Weihe Basin, Central China, a region sensitive to the East Asian monsoon. The record shows an abrupt monsoon shift at ~4.2 million years ago, interpreted as the result of high-latitude cooling, with an extratropical temperature decrease across a critical threshold. The precipitation time series exhibits a pronounced ~100–thousand year periodicity and the presence of precession and half-precession cycles, which suggest low-latitude forcing. The synchronous phase but mismatched amplitudes of the East Asian monsoon precipitation proxy and eccentricity suggest a nonlinear but sensitive precipitation response to temperature forcing in the Pliocene warm world. These observations highlight the role of high- and low-latitude forcing of East Asian monsoon variations on tectonic and orbital time scales.


Geology ◽  
2013 ◽  
Vol 41 (9) ◽  
pp. 1023-1026 ◽  
Author(s):  
H. Lu ◽  
S. Yi ◽  
Z. Liu ◽  
J. A. Mason ◽  
D. Jiang ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
Xin Zhou ◽  
Tao Zhan ◽  
Luyao Tu ◽  
John P. Smol ◽  
Shiwei Jiang ◽  
...  

More than 10% of the world’s population lives in the East Asian monsoon (EAM) region, where precipitation patterns are critical to agricultural and industrial activities. However, the dominant forcing mechanisms driving spatiotemporal changes in the EAM remain unclear. We selected Holocene records tracking monsoon precipitation in the EAM region reconstructed from pollen data to explore the spatiotemporal patterns of monsoon precipitation changes. Our analysis shows a time-transgressive pattern of maximum precipitation, with earlier occurrence in the southern area and later occurrence in the northern area. The monthly insolation changes force monsoon precipitation in different parts of the EAM region through a shift in the Western Pacific Subtropical High. We conclude that low-latitude monthly insolation changes (rather than average summer insolation changes) were the main forcing mechanisms of the spatiotemporal patterns of the monsoon precipitation maximum during the Holocene.


2021 ◽  
Author(s):  
Hansheng Wang ◽  
Junsheng Nie ◽  
Zeng Luo

&lt;p&gt;3.6 Ma represents a time period when Earth transitioned from single pole ice sheets to permanent ice sheets existing in both hemispheres. However, it remains unclear how this transition had its impact on East Asian summer monsoon system, which controls living of a large population. Here, we present a high-resolution (2~4 kyr) monsoon precipitation record from the Chaona section on the central Chinese Loess Plateau during the 3.95-2.95 Ma, using the magnetic parameter-based precipitation proxy (&amp;#967;fd/HIRM). The results reveal intensified precessional and semiprecessional fluctuations during high eccentricity, emphasizing direction role of low latitude insolation played in forcing Asian monsoon precipitation. The precipitation records also show that the 41-kyr cycles intensified after 3.3 Ma, in contrast with decreased obliquity variation amplitude of summer insolation. We interpret the enlarged 41-kyr precipitation cycles in our records as a result of high latitude ice sheet forcing. Together, our work provides an example demonstrating both high and low latitude forcing of Asian monsoon precipitation during the late Pliocene.&lt;/p&gt;


Author(s):  
Ben Yang ◽  
Yaocun Zhang ◽  
Yun Qian ◽  
Fengfei Song ◽  
L. Ruby Leung ◽  
...  

AbstractMonsoon precipitation is a dominant driver of floods and droughts over East Asia, which affect billions of people. The lack of air-sea coupling has been blamed for the poor East Asian monsoon precipitation simulations in atmosphere-only models because coupled models generally do better. Based on analysis of simulations from 18 pairs of atmosphere-only and coupled models from the Coupled Model Intercomparison Project phase 5, we show that the improved monsoon precipitation in coupled models is largely due to compensation from sea surface temperature (SST) biases that originate from atmosphere model biases. Such bias compensation is demonstrated using surface energy budgets and a process chain to improve both the climatological mean and interannual precipitation patterns in coupled models. Models with larger atmosphere model errors benefit more from coupling and models with smaller errors benefit less. Hence the key to simultaneously improving the simulations of East Asian monsoon precipitation and SST is a better atmosphere model.


Sign in / Sign up

Export Citation Format

Share Document