co2 forcing
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Jong-Seong Kug ◽  
Ji-Hoon Oh ◽  
Soon-Il An ◽  
Sang-Wook Yeh ◽  
Seung-Ki Min ◽  
...  

2021 ◽  
Author(s):  
Kezhou Lu ◽  
Jie He ◽  
Boniface Fosu ◽  
Maria A.A. Rugenstein

2021 ◽  

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.


2021 ◽  
Author(s):  
Se-Yong Song ◽  
Sang-Wook Yeh ◽  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Seung-Ki Min ◽  
...  

2021 ◽  
Author(s):  
Michael Goss ◽  
Aditi Sheshadri ◽  
Erik Lindgren ◽  
Noah Diffenbaugh

<p>The winter jet stream in the North Atlantic has been shown to preferentially occur at three distinct latitudes [Woolings et al., 2010; Woolings et al., 2018], which we will call the three Atlantic “jet regimes.” Distinct physical mechanisms may be responsible for each of the three jet regimes—for example, the northernmost jet regime is strongly linked to the Greenland tip jet [White et al., 2019]. We seek to investigate the role of stratospheric and CO2 forcing, such as from sudden stratospheric warmings (SSWs), strong polar vortex events (SPVs), and anthropogenic global warming, on the Atlantic jet in the context of these jet regimes.</p><p>To do so, we use a “jet latitude index” (JLI), which is determined by finding the latitude of the peak zonal winds over some latitude range, averaged over some longitude range, to show that sudden stratospheric warmings (SSWs) impact the likelihood that the Atlantic jet will be in any particular jet regime. These calculations are performed in the ECMWF Interim Reanalysis (ERAI) data set, an in-house 200-year Whole Atmosphere Community Climate Model (WACCM) run, and in a subset of CMIP6 models. We seek to investigate how changes in the composite response of the jet over the Atlantic associated with SSWs, SPVs, and greenhouse gas forcing, are borne out in the context of the three Atlantic jet regimes. We find that, following SSWs, the northern regime becomes less frequent, and the southern regime becomes more frequent, while the jet latitude peaks of the regimes do not notably shift. Following SPVs, the northern regime becomes more frequent, the southern regime becomes less frequent, and again, the peak latitudes do not shift. Under CO2 forcing, we do not find a consistent signal from model to model, and we test whether these differences may be related to model differences in local meridional temperature gradients over the Atlantic.</p>


2021 ◽  
Author(s):  
Nadir Jeevanjee ◽  
Jacob Seeley ◽  
David Paynter ◽  
Stephan Fueglistaler

<p>Instantaneous clear-sky CO2 forcing is known to vary significantly over the globe, but the climate factors which control this are not well understood. Building upon the work of Wilson (2012), we build a first-principles, analytical model for CO2 forcing which requires as input only the temperatures at the surface and roughly 20 hPa, as well as column relative humidity. This model quantitatively captures global variations in clear-sky CO2 forcing, and shows that the meridional forcing gradient is predominantly due to the meridional surface temperature gradient, with modulation by water vapor. In particular, the Simpsonian behavior of water vapor emission implies an upper bound on CO2 forcing (with respect to surface temperature) which is realized in the present day tropics.</p>


2021 ◽  
Vol 17 (1) ◽  
pp. 269-315
Author(s):  
David K. Hutchinson ◽  
Helen K. Coxall ◽  
Daniel J. Lunt ◽  
Margret Steinthorsdottir ◽  
Agatha M. de Boer ◽  
...  

Abstract. The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼34 million years ago (Ma) and lasting ∼790 kyr. The change is marked by a global shift in deep-sea δ18O representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean temperature indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate-adapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (∼325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes playing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data–model comparison should be considered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not include dynamic ice sheets and in some cases may be under-sensitive to CO2 forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in CO2.


2020 ◽  
Vol 16 (1) ◽  
pp. 014020
Author(s):  
Tom Wood ◽  
Christine M McKenna ◽  
Andreas Chrysanthou ◽  
Amanda C Maycock

Sign in / Sign up

Export Citation Format

Share Document