Green manure and phosphate rock effects on phosphorus availability in a northern Great Plains dryland organic cropping system

2011 ◽  
Vol 1 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Terry L. Rick ◽  
Clain A. Jones ◽  
Richard E. Engel ◽  
Perry R. Miller
2006 ◽  
Vol 21 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Eric A. DeVuyst ◽  
Thomas Foissey ◽  
George O. Kegode

AbstractCurrent production practices in the Red River Valley of North Dakota and Minnesota involve use of extensive tillage and/or herbicides to control weeds. Given the erosion potential, environmental concerns associated with herbicides, and herbicide-resistant weeds, alternative cropping systems that mitigate these problems need to be assessed economically. Furthermore, the role that government commodity programs play in the adoption of more ecologically friendly cropping systems needs to be determined. We evaluated 8 years of yield data (1994–2001) from field plots near Fargo, North Dakota, to compare the economics of two alternative cropping systems, reduced-input (RI) and no-till (NT), to a conventional tillage (CT) cropping system. The RI system relies on a more diverse rotation of soybean (SB), spring wheat (SW), sweet clover (SC) and rye, and uses fewer herbicide and fertilizer inputs than CT or NT. Both NT and CT systems rotate SB and SW. We found that CT returns averaged over $47 ha−1more than NT during the study period. Because SC yield data were not available, the economic competitiveness of RI was calculated using break-even yields and returns for SC. Historical SC yields in Cass County, North Dakota were not statistically different from the break-even yields. However, when government program payments were considered, break-even returns for SC increased by about $15 and $18 ha−1and break-even yields by 0.44 and 0.52 MT ha−1for RI to compare with NT and CT, respectively. These results indicate that CT management offers greater economic return than either RI or NT and that government program payments impede adoption of more environmentally friendly cropping systems in the northern Great Plains.


2008 ◽  
Vol 88 (5) ◽  
pp. 833-836 ◽  
Author(s):  
M A Liebig ◽  
J R Hendrickson ◽  
J D Berdahl ◽  
J F Karn

Intermediate wheatgrass [Thinopyrum intermedium (Host) Barkw. & D.R. Dewey subsp. intermedium] is a productive, high-quality perennial forage that lacks persistence under grazing. A study was conducted to evaluate the effects of three grazing times on soil bulk density, soil pH, and soil organic C under intermediate wheatgrass. Treatment effects on the three soil attributes were negligible, implying grazing time did not negatively impact intermediate wheatgrass beyond a threshold whereby critical soil functions were impaired. Findings from this study are important in the context of sustainable forage and cropping system management, where maintaining or improving critical soil functions are essential for enhancing agroecosystem sustainability. Key words: Seeded perennial forages, Northern Great Plains, soil organic C


Soil Science ◽  
2014 ◽  
Vol 179 (1) ◽  
pp. 11-20 ◽  
Author(s):  
The Can Caesar-TonThat ◽  
William B. Stevens ◽  
Upendra M. Sainju ◽  
Anthony J. Caesar ◽  
Mark West ◽  
...  

2009 ◽  
Vol 89 (3) ◽  
pp. 455-464 ◽  
Author(s):  
J. M. Baird ◽  
F. L. Walley ◽  
S. J. Shirtliffe

Seeding rates have not been established for organic production of field pea in the northern Great Plains and producers must rely upon a recommended target stand of 88 plants m-2 for conventional production of this crop. This seeding rate may not be suitable as the two systems differ in the use of inputs and in pest management. The objective of this study was to determine an optimal seeding rate for organic production of field pea considering a number of agronomic factors and profitability. Field sites were established using a randomized complete block design with increasing seeding rates, summerfallow and green manure treatments. Seed yield increased up to 1725 kg ha-1 with increasing seeding rate. Weed biomass decreased with increasing seeding rate by up to 68%. Post-harvest soil phosphorus levels and soil water storage did not change consistently between treatments. Post-harvest soil inorganic nitrogen (N), however, was higher for the summerfallow and green manure treatments than for the seeding rate treatments. Field pea reached a maximum economic return at a seeding rate of 200 seeds m-2 and an actual plant density of 120 plants m-2. Organic farmers should increase the seeding rate of field pea to increase returns and provide better weed suppression. Key words: Pea (field), organic, seeding rate, weed suppression, profit, soil N


2009 ◽  
Vol 89 (2) ◽  
pp. 281-288 ◽  
Author(s):  
P. M. Carr ◽  
G. B. Martin ◽  
R. D. Horsley

Tillage is being reduced in semiarid regions. The impact of changing tillage practices on field pea (Pisum sativum L.) performance has not been considered in a major pea-producing area within the US northern Great Plains. A study was conducted from 2000 through 2005 to determine how field pea performance compared following spring wheat (Triticum aestivum L.) in clean-till (CT), reduced-till (RT), and no-till (NT) systems arranged in a randomized complete block at Dickinson in southwestern North Dakota. Seed yield increased over 1600 kg ha-1 in 2000 and almost 400 kg ha-1 in 2003 under NT compared with CT, and by 960 kg ha-1 in 2000 under NT compared with RT (P < 0.05). Differences in seed yield were not detected between tillage systems in other years. Plant establishment was improved as tillage was reduced, averaging 66 plants m-2 under NT and RT compared with 60 plants m-2 under CT management. The soil water conservation that can occur after adopting NT may explain the increased seed yields that occurred in some years. These results suggest that field pea seed yield can be increased by eliminating tillage in semiarid areas of the US northern Great Plains, particularly when dry conditions develop and persist. Key words: Zero tillage, field pea, cropping system, N-fixation, legume


2016 ◽  
Vol 96 (5) ◽  
pp. 867-886 ◽  
Author(s):  
S.P. Mooleki ◽  
Y. Gan ◽  
R.L. Lemke ◽  
R.P. Zentner ◽  
C. Hamel

Green manure crops may have a role to play in the development of sustainable agricultural systems in the semiarid northern Great Plains of North America. This study determined the benefits of different green manure crops, seeding dates, and termination methods on soil nitrogen, phosphorus, and moisture, as well as the performance of durum wheat following green manures the following year. Field experiments were conducted at Swift Current, Saskatchewan, from 2006 to 2009. Three green manure crops [forage pea (Pisum sativum L.), chickling vetch (Lathyrus sativus L.), and black lentil (Lens culinaris Medik.)] were seeded in May, June, and July, and terminated at full bloom using glyphosate, rototilling or by frost. Other treatments included summerfallow and stubble of selected crops harvested for grain or silage. Different green manure crops, seeding dates or termination methods had similar effects on soil moisture, available N, and exchangeable P at termination or the following spring. These effects of green manure management on soil residual characteristics were comparable to those observed under summerfallow, but higher than those on grain or silage stubble. Therefore, green manure is a viable alternative to summerfallowing and could be seeded any time during the growing season. If seeded late, green manure could be terminated by frost, thus saving on costs.


2011 ◽  
Vol 103 (4) ◽  
pp. 1292-1298 ◽  
Author(s):  
Brett L. Allen ◽  
Joseph L. Pikul ◽  
Jed T. Waddell ◽  
Verlan L. Cochran

1990 ◽  
Vol 19 (5) ◽  
pp. 1388-1391 ◽  
Author(s):  
Michael J. Weiss ◽  
Edward U. Balsbaugh ◽  
Ernest W. French ◽  
K. Ben Hoag

1989 ◽  
Vol 3 (1) ◽  
pp. 146-150 ◽  
Author(s):  
Eric R. Gallandt ◽  
Peter K. Fay ◽  
William P. Inskeep

Clomazone is effective as a chemical fallow herbicide; however, its soil residual properties in the Northern Great Plains are unknown. Clomazone was applied to soil at 0.6, 1.1, and 2.2 kg ai/ha at two locations in Montana in the spring of 1986. Soil samples were taken at each location at monthly intervals for 6 months. Residual levels of the herbicide were estimated by measuring the percent chlorosis by height in oat leaves. Clomazone at 2.2 kg ai/ha applied to a loam soil dissipated to levels below 0.1 mg/kg in 3 months and applied to a silty clay loam soil dissipated to 0.2 mg/kg 6 months after application. Half-lives (t½), determined from first-order rate plots, were 33 and 37 days in the Willow Creek loam and Bozeman silty clay loam, respectively. Thus, clomazone residue from labeled-use rates should not inhibit wheat in a wheat-fallow-wheat cropping system in Montana.


Sign in / Sign up

Export Citation Format

Share Document