scholarly journals Removal of multiple pesticide residues from water by low-pressure thin-film composite membrane

2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Ayan Mukherjee ◽  
Romil Mehta ◽  
Soumen Saha ◽  
A. Bhattacharya ◽  
Pabitra Kumar Biswas ◽  
...  

AbstractThe study evaluated removal efficiency of 43 pesticides from water by thin-film composite polyamide membrane indigenously prepared by interfacial polymerization of 1,3-phenylenediamine and 1,3,5 trimesoyl chloride coated on asymmetric polysulfone support. Membrane performance was evaluated by gas and liquid chromatography mass spectroscopy determination of multiple pesticides remaining in feed and permeated water following the application of pesticides each @ 0.02, 0.05, and 0.10 mg/L in de-ionized water. The membrane was most efficient in the rejection of persistent organochlorine insecticides, viz. endosulfans (100%), dichlorodiphenyltrichloroethane (95%), and hexachlorocyclohexane (92%). Out of 43 selected pesticides, 33 were removed by > 80%. Size exclusion mass transfer played a significant role for molecules to pass through the membrane as observed for endosulfan isomers, endosulfan sulphate, and difenoconazole with molecular weight > 400. Pesticide rejection was also related to hydrophobicity (Log P). Hydrophobic pesticides with log P > 4.5 were rejected by > 80%, while monocrotophos with less hydrophobicity (log P = − 0.22) exhibited poor rejection (38%). Water flux decreased with an increase in pesticide concentration. The process of pesticide filtration was optimized at 200 psi. The results indicated the potential of the membrane to remove pesticides from water.

RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 40742-40752 ◽  
Author(s):  
Gui-E. Chen ◽  
Yan-Jun Liu ◽  
Zhen-Liang Xu ◽  
Yong-Jian Tang ◽  
Hui-Hong Huang ◽  
...  

A novel thin-film composite polyamide membrane for nanofiltration is prepared, and the addition of sodium N-cyclohexylsulfamate is found to have a significant influence on its performance.


2014 ◽  
Vol 4 (3) ◽  
pp. 174-181 ◽  
Author(s):  
Ahmad Akbari ◽  
Sayed Majid Mojallali Rostami

A novel polyamide thin film composite (PATFC) as a nanofiltration (NF) membrane was prepared by a modified interfacial polymerization (IP) reaction. Herein trimesoyl chloride and piperazine as the reagents, dimethyl sulfoxide (DMSO) as additive and polysulfone (PSF) ultrafiltration membrane as support were used respectively. The main goal of the present study is to improve TFC membrane water flux by addition of DMSO into the aqueous phase of IP reaction, without considerable rejection loss. Morphological, roughness, and chemical structures of the PATFC membrane were analyzed by scanning electron microscopy, atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FT-IR), respectively. The AFM analysis demonstrated that as DMSO was added to the aqueous phase, the surface roughness of PATFC membrane increased. Results showed that the pure water flux of modified-PATFC membranes increased up to 46%, compared to nonmodified-PATFC membrane, while salt rejection was not sacrificed considerably. The results elucidated that the addition of DMSO leads to an increase in the number of cross-linking bonds between monomers and pore diameter, which results in enhancement of the membrane flux. Finally, the results showed that the newly developed PATFC membrane is a high-performance NF membrane which augments the efficiency of conventional PATFC membrane.


RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 98730-98739 ◽  
Author(s):  
Xiaodan Weng ◽  
Yanli Ji ◽  
Fengyang Zhao ◽  
Quanfu An ◽  
Congjie Gao

Zwitterionic membranes prepared via interfacial polymerization directly exhibit remarkably high water flux (80.3 L m−2 h−1) and protein adsorption resistance.


2012 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
N.A. Jalanni ◽  
M.N. Abu Seman ◽  
C.K. M Faizal

Nanofiltration (NF) polyester thin-film composite (TFC) membranes have been prepared by interfacial polymerization using commercial polyethersulfone membrane support. At 6% (w/v) triethanolamine (TEAO) concentrations in the aqueous solution and a range of interfacial polymerization times in the organic solution containing trimesoyl chloride (TMC) were studied. Nanofiltration membranes were produced with varying properties through interfacial polymerization technique. The ability to use NF membranes with varying properties will improve overall process efficiency. This study has shown that through interfacial polymerization technique, the variation of reaction time as well as can affect the performance of the membrane produced. As a result, increasing the reaction time resulted in decreasing water permeabilities. Polyester with some amide group produced after interfacial polymerization occurred as shown by FT-IR spectra. Straight lines were obtained between Jw and ΔP and the water flux of distilled water shown that flux is directly proportional to transmembrane pressure (TMP). At low reaction time (5 min), the water flux has no significant effect on water permeance. So, the reaction time has a significant effect on the growth of thin film.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 544
Author(s):  
Manuel Reyes De Guzman ◽  
Micah Belle Marie Yap Ang ◽  
Shu-Hsien Huang ◽  
Qing-Yi Huang ◽  
Yu-Hsuan Chiao ◽  
...  

Thin-film composite (TFC) polyamide membranes formed through interfacial polymerization can function more efficiently by tuning the chemical structure of participating monomers. Accordingly, three kinds of diamine monomers were considered to take part in interfacial polymerization. Each diamine was reacted with trimesoyl chloride (TMC) to manufacture TFC polyamide nanofiltration (NF)-like forward osmosis (FO) membranes. The diamines differed in chemical structure; the functional group present between the terminal amines was classified as follows: aliphatic group of 1,3-diaminopropane (DAPE); cyclohexane in 1,3-cyclohexanediamine (CHDA); and aromatic or benzene ring in m-phenylenediamine (MPD). For FO tests, deionized water and 1 M aqueous sodium sulfate solution were used as feed and draw solution, respectively. Interfacial polymerization conditions were also varied: concentrations of water and oil phases, time of contact between the water-phase solution and the membrane substrate, and polymerization reaction time. The resultant membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and surface contact angle measurement to identify the chemical structure, morphology, roughness, and hydrophilicity of the polyamide layer, respectively. The results of FO experiments revealed that among the three diamine monomers, CHDA turned out to be the most effective, as it led to the production of TFC NF-like FO membrane with optimal performance. Then, the following optimum conditions were established for the CHDA-based membrane: contact between 2.5 wt.% aqueous CHDA solution and polysulfone (PSf) substrate for 2 min, and polymerization reaction between 1 wt.% TMC solution and 2.5 wt.% CHDA solution for 30 s. The composite CHDA-TMC/PSf membrane delivered a water flux (Jw) of 18.24 ± 1.33 LMH and a reverse salt flux (Js) of 5.75 ± 1.12 gMH; therefore, Js/Jw was evaluated to be 0.32 ± 0.07 (g/L).


Sign in / Sign up

Export Citation Format

Share Document