scholarly journals Kinetic and isotherm modeling for acid blue 113 dye adsorption onto low-cost nutraceutical industrial fenugreek seed spent

2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Mohammed A. H. Dhaif-Allah ◽  
Syed Noeman Taqui ◽  
Usman Taqui Syed ◽  
Akheel Ahmed Syed
2019 ◽  
Vol 1 (4) ◽  
Author(s):  
Mohammed A. H. Dhaif Allah ◽  
Syed Noeman Taqui ◽  
Usman Taqui Syed ◽  
Akheel Ahmed Syed

2021 ◽  
Author(s):  
Tariq Al-Musawi ◽  
Nezamaddin Mengelizadeh ◽  
Orabi Shareef AL-Rawi ◽  
Davoud Balarak

Abstract A chitosan polymer was magnetized by coating with magnetite Fe2O3 nanoparticles, and the resultant material (C–Fe2O3) was first characterized through scanning electron microscopy equipped with energy–dispersive X-ray spectroscopy, transmission electron microscopy, atomic force microscopy, thermogravimetric, X-ray diffractometry, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller, and point of zero charge analyses. C–Fe2O3 was then employed as a separable and efficient adsorptive agent to remove acid blue 113 (AB113) dye from aqueous solution. The removal efficiency was optimized at different environmental parameter values (pH: 3–11, C–Fe2O3 dose: 0.1–1 g/L, initial AB113 dye concentration: 10–100 mg/L, adsorption time: 0–300 min, and temperature: 388–318 K). Under optimum conditions, an AB113 dye removal efficiency of 99.68% was achieved. In addition, the effect of the presence of NaCl, NaNO3, Na2CO3, and MgSO4 ions on the AB113 dye removal efficiency could be ranked as NaCl > NaNO3 > MgSO4 > Na2CO3. The statistical analysis using the coefficient of determination, root mean square error, chi-square test, sum of squared errors, and average relative error showed that the Freundlich and pseudo-second-order equations were the best mathematical models for fitting the isothermal and kinetics data. Further kinetics analyses showed that the adsorption of AB113 molecules on C–Fe2O3 active sites was dominated by the intraparticle diffusion process. Thermodynamic parameters indicated that the AB113 dye adsorption process was favorable, endothermic, and spontaneous. Furthermore, an increase in temperature had a positive impact on AB113 dye removal. The regeneration study confirmed the excellent shelf life of C–Fe2O3, with only a slight loss in the removal efficiency (< 7%) being detected after six operational cycles of AB113 dye adsorption. Compared with other adsorbents, C–Fe2O3 was more effective for the adsorption of AB113 dye, with an adsorption uptake up to 128 mg/g.


2021 ◽  
Vol 240 ◽  
pp. 02004
Author(s):  
Latifa Boukarma ◽  
Rachid Aziam ◽  
Said Baroud ◽  
Elhassane Eddaoudi ◽  
Fouad Sinan ◽  
...  

Water pollution is an alarming problem in developing countries. Dried algae can be considered as potential and suitable bio-sorbents due to their fast and easy growth and high availability. The special surface properties of these algae allow them to adsorb different types of organic and inorganic pollutants from solutions. In this context, the removal of anionic acid blue 113 dye (AB113) from aqueous solutions by dried Corallina officinalis alga as low-cost bio-sorbent was chosen as a case study of a typical remediation process of water contaminants. The effect of various environmental and physicochemical parameters has been studied. The results show that the equilibrium adsorption was established within 120 min. The sorption phenomenon was investigated by determining the process kinetics at different concentrations and the adsorption isotherms at different temperatures. The kinetics results showed that the pseudo second-order kinetics model generates the best agreement with the experimental data. The modeling results showed that linear Langmuir and Freundlich models appear to fit the adsorption data better than Temkin model for the adsorption of AB113 onto dried C. officinalis alga. It can be concluded that C. Officinalis alga can be successfully used as adsorbent.


Author(s):  
Peyman Pourali ◽  
Malaekeh Behzad ◽  
Hossein Arfaeinia ◽  
Ali Ahmadfazeli ◽  
Shirin Afshin ◽  
...  

Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


2020 ◽  
pp. 1-22
Author(s):  
Edwin A. Ofudje ◽  
Ezekiel F. Sodiya ◽  
Francis H. Ibadin ◽  
Abimbola A. Ogundiran ◽  
Samson O. Alayande ◽  
...  

2021 ◽  
Author(s):  
Sabri Ouni ◽  
Naim Bel Haj Mohamed ◽  
Noureddine Chaaben ◽  
Adrian Bonilla-Petriciolet ◽  
Mohamed Haouari

Abstract Undoped and Mn-doped ZnS nanocrystals encapsulated with thioglycolic acid were synthetized and characterized with different techniques, and finally tested in the photodegradation of a methyl orange in aqueous solution under UV and sunlight irradiations. FTIR and X-ray diffraction results confirmed the functionalization of these nanocrystals surface by thioglycolic acid and the formation of crystalline structures of ZnS and Mn-doped ZnS with cubic and hexagonal phases. Calculated average size of ZnS nanocrystals was in the range of 2 - 3 nm. It was observed a blue shift of the absorbance threshold and the estimated bandgap energies were higher than that of Bulk ZnS thus confirming the quantum confinement effect of charge carriers. Photoluminescence spectra of ZnS nanocrystals exhibited emission in the range of 410- 490 nm and the appearance of an additional emission band around 580 nm (2.13eV) connected to the 4𝑇1→ 6𝐴1 transition of the Mn2+ions. Photodegradation of methylene orange with undoped and Mn-doped ZnS-TGA nanocrystals was investigated. Dye adsorption prior to photocatalysis using nanocrystals was studied via kinetic experiments and statistical physics models. The maximum dye adsorption capacity on doped ZnS-TGA was ~ 26.98 mg/g. The adsorption kinetic was found to follow the pseudo-second-order kinetic model.According to the statistical physics results, the calculated adsorption energy was 22.47-23.47 kJ/mol and it showed that the dye adsorption was associated to the hydrogen interaction where the removal process was feasible and multi-molecular. The photocatalytic activity of undoped ZnS nanoparticles under UV irradiation showed better efficiency than doped nanocrystals thus indicating that manganese doping generated a dropping of the photocatalytic degradation of the dye. Dye degradation efficiency of 81.37% using ZnS-TGA nanocrystals was achieved after 6 min, which indicated that ZnMnS-TGA nanocrystals may be considered as an alternative low cost and environmental friendly material for facing water pollution caused by organic compounds via photodegradation processes.


Sign in / Sign up

Export Citation Format

Share Document