scholarly journals A review of gas enhanced oil recovery schemes used in the North Sea

2018 ◽  
Vol 8 (4) ◽  
pp. 1373-1387 ◽  
Author(s):  
Afeez O. Gbadamosi ◽  
Joseph Kiwalabye ◽  
Radzuan Junin ◽  
Agi Augustine
Energy Policy ◽  
2017 ◽  
Vol 101 ◽  
pp. 123-137 ◽  
Author(s):  
T. Compernolle ◽  
K. Welkenhuysen ◽  
K. Huisman ◽  
K. Piessens ◽  
P. Kort

Author(s):  
Ann Muggeridge ◽  
Andrew Cockin ◽  
Kevin Webb ◽  
Harry Frampton ◽  
Ian Collins ◽  
...  

Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.


2020 ◽  
Vol 27 (1) ◽  
pp. petgeo2019-132
Author(s):  
Marco Ludovico-Marques

The Lourinhã Formation in the western region of Portugal is an analogue for the Statfjord Formation in the oil and gas fields of the Norwegian Northern North Sea. This petrophysics study encompasses a specific sandstone variety (M variety) of the Lourinhã Formation. This lithic arkose shows an average value of effective porosity of 18.5% and a permeability range of 20–30 mD, and is representative of the distribution range in the petrophysics models of the reservoirs of the Statfjord Formation. The petrographical, physical and mechanical characterization of the M variety sandstone is compared with the main features of the oil- and gas-producing sandstones of the Statfjord Formation in a reference well in the Norwegian Northern North Sea. Efficient enhanced oil recovery (EOR) projects in the oil and gas fields of the Norwegian Gullfaks hub are always needed, and this study intends to provide a contribution to that endeavour.


2008 ◽  
Vol 11 (04) ◽  
pp. 768-777 ◽  
Author(s):  
Olaf K. Huseby ◽  
Mona Andersen ◽  
Idar Svorstol ◽  
Oyvind Dugstad

Summary To obtain improved oil recovery (IOR), it is crucial to have a best-possible description of the reservoir and the reservoir dynamics. In addition to production data, information can be obtained from 4D seismic and from tracer monitoring. Interwell tracer testing (IWTT) has been established as a proven and efficient technology to obtain information on well-to-well communication, heterogeneities, and fluid dynamics. During such tests, chemical or radioactive tracers are used to label water or gas from specific wells. The tracers then are used to trace the fluids as they move through the reservoir together with the injection phase. At first tracer breakthrough, IWTT yields immediate and unambiguous information on injector/producer communication. Nevertheless, IWTT is still underused in the petroleum industry, and data may not be used to their full capacity--most tracer data are used in a qualitative manner (Du and Guan 2005). To improve this situation, we combine tracer-data evaluation, 4D seismic, and available production data in an integrated process. The integration is demonstrated using data from the Snorre field in the North Sea. In addition to production data, extensive tracer data (dating back to 1993) and results from three seismic surveys acquired in 1983, 1997, and 2001 were considered. Briefly this study shows thatSeismic and tracer data applied in combination can reduce the uncertainties in interpretations of the drainage patterns.Waterfronts interpreted independently by tracer response and seismic dimming compare well.Seismic brightening interpreted as gas accumulation is supported by the gas-tracer responses. Introduction The Snorre field is located in the Tampen Spur area on the Norwegian continental shelf and is a system of rotated fault blocks with beds dipping 4 to 10° toward the northwest. The reservoir sections are truncated by the Base Cretaceous unconformity. The reservoir sections consist of fluvial deposits of the Statfjord and Lunde formations. The reservoir units contain thin sand layers with alternating shale in a complex fault pattern. A challenge regarding optimization of the reservoir drainage, as well as oil production, is to understand how the different sand layers communicate and to what degree the faults act as barriers or not. The present work concentrates on the integration of 4D-seismic and tracer methods to obtain information on fluid flow in the Upper Statfjord (US) and Lower Statfjord (LS) formations in the Central Fault Block (CFB). The outline of this fault block is indicated in Fig. 1. The net/gross ratio is higher and the reservoir quality is generally better in the US than the LS formation. The CFB is produced by water-alternating-gas (WAG) injection as the drive mechanism, where the injectors are placed downdip and the producers updip. The average reservoir pressure in the CFB is 300 bar, and the reservoir temperature is 90°C. Tracer data are used to understand fluid flow in the reservoir. The data give valuable information about the dynamic behavior and well communication, but in some cases the interpretation may be complicated by reinjection of produced gas and water. Tracer studies in the Snorre field have been presented previously in several papers (Dugstad et al. 1999; Ali et al. 2000; Aurdal et al. 2001). To use the data fully, however, integration with other types of reservoir data is important. The main objectives of the seismic monitoring of Snorre are to contribute to increased oil recovery and to optimize placement of new wells. 4D analysis, together with tracers, should potentially increase the multidisciplinary understanding of the drainage pattern in the reservoirs. The results should, in addition to all the reservoir and production data, be used actively in target-remaining-oil processes and in well planning. In addition, the 4D data can give input to update the geological model and simulation model (history matching) and to identify possible well interventions. There is also a potential to include the data in workflows to identify lithology changes.


Author(s):  
SAURABH KUMAR ◽  
RAJIV DANDOTIYA ◽  
RAJESH KUMAR ◽  
UDAY KUMAR

Many offshore oil and gas installations in the North Sea are approaching the end of their designed lifetimes. Technological improvements and higher oil prices have developed favorable conditions for more oil recovery from these existing installations. However, in most cases, an extended oil production period does not justify investment in new installations. Therefore cost-effective maintenance of the existing platform infrastructure is becoming very important. In this paper, an inspection frequency optimization model has been developed which can be used effectively by the inspection and maintenance personnel in the industry to estimate the number of inspections/optimum preventive maintenance time required for a degrading component at any age or interval in its lifecycle at a minimum total maintenance cost. The model can help in planning inspections and maintenance intervals for different components of the platform infrastructure. The model has been validated by a case study performed on flowlines installed on the top side of an offshore oil and gas platform in the North Sea. Reliability analysis has been carried out to arrive at the best inspection frequency for the flowline segments under study.


2003 ◽  
Vol 20 (1) ◽  
pp. 395-413 ◽  
Author(s):  
M. Gambaro ◽  
M. Currie

AbstractThe Balmoral Oilfield is a mature asset in its final phase of production. Associated with the Balmoral development have been the less significant Glamis and Stirling Fields. Each field is different from the perspective of geology and many other issues. Balmoral is a typical Paleocene oilfield with good water drive from a large regional aquifer. Interestingly this was not recognized at the start of the development when water injection facilities were commissioned. Glamis is a smaller field of Late Jurassic age containing somewhat lighter oil than Balmoral. Water injection has been necessary to maximize recovery in this field. Stirling is one of the few fields in the North Sea to produce commercially from the naturally fractured Devonian Sandstone. This field is developed by a single horizontal well.Balmoral oil recovery has significantly exceeded original expectations, whilst Glamis and Stirling have produced as much as expected.


1969 ◽  
Vol 17 ◽  
pp. 17-20
Author(s):  
Dan Olsen

Injection of CO2 is a method that may increase the recovery of oil from Danish chalk reservoirs in the North Sea. The method is used elsewhere, particularly in North America, but has so far not been used in the North Sea and has nowhere been used for chalk reservoirs, and the performance of the method when used for North Sea chalk is therefore uncertain. A laboratory flooding experiment was conducted at the Geological Survey of Denmark and Greenland on a sample from the Nana-1X well of the Halfdan oil field in the Danish North Sea in order to test the efficiency of CO2-enriched water to produce additional oil from chalk. The sample is a low-permeability chalk from the Ekofisk Formation and represents rocks that are marginal to the Halfdan reservoir in an economical sense.


Sign in / Sign up

Export Citation Format

Share Document