scholarly journals Isolation and functional characterization of 5-enolpyruvylshikimate 3-phosphate synthase gene from glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47

3 Biotech ◽  
2020 ◽  
Vol 10 (4) ◽  
Author(s):  
Xue Li Tan ◽  
Rofina Yasmin Othman ◽  
Chee How Teo
Planta ◽  
2018 ◽  
Vol 248 (5) ◽  
pp. 1121-1141 ◽  
Author(s):  
Papri Basak ◽  
Shiny Sangma ◽  
Abhishek Mukherjee ◽  
Tanushree Agarwal ◽  
Sonali Sengupta ◽  
...  

2011 ◽  
Vol 62 (6) ◽  
pp. 2023-2038 ◽  
Author(s):  
E. Cordoba ◽  
H. Porta ◽  
A. Arroyo ◽  
C. San Roman ◽  
L. Medina ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1074
Author(s):  
Jian-Chun Song ◽  
Zhan-Jun Lu ◽  
Long Yi ◽  
Hai-Zhong Yu

Trehalose-6-phosphate synthase (TPS) plays an important role in the synthesis of trehalose. In the current study, a TPS gene was obtained from Diaphorina citri, and named as DcTPS1 which encoded a protein of 833 amino acid residues. Real-time quantitative PCR (qPCR) analysis revealed that DcTPS1 had the highest expression level in the midgut and fifth-instar nymph stage. Knockdown of DcTPS1 by RNA interference (RNAi) induced an abnormal phenotype and increased mortality and malformation rate with a decreased molting rate. In addition, silencing of DcTPS1 significantly inhibited D. citri chitin metabolism and fatty acid metabolism, while the expression levels of fatty acid decomposition-related genes were downregulated. Furthermore, comparative transcriptomics analysis revealed that 791 differentially expressed genes (DEGs) were upregulated and 678 DEGs were downregulated when comparing dsDcTPS1 groups with dsGFP groups. Bioinformatics analysis showed that upregulated DEGs were mainly involved in oxidative phosphorylation, whereas downregulated DEGs were mainly attributed to the lysosome and ribosome. These results indicated that DcTPS1 played an important role in the growth and development of D. citri.


2020 ◽  
Vol 11 ◽  
Author(s):  
Shaoyu Zhang ◽  
Guangyu Ding ◽  
Wenmin He ◽  
Kai Liu ◽  
Yiwei Luo ◽  
...  

2003 ◽  
Vol 185 (24) ◽  
pp. 7193-7201 ◽  
Author(s):  
Jesse D. Woodson ◽  
Carmen L. Zayas ◽  
Jorge C. Escalante-Semerena

ABSTRACT The ability of archaea to salvage cobinamide has been under question because archaeal genomes lack orthologs to the bacterial nucleoside triphosphate:5′-deoxycobinamide kinase enzyme (cobU in Salmonella enterica). The latter activity is required for cobinamide salvaging in bacteria. This paper reports evidence that archaea salvage cobinamide from the environment by using a pathway different from the one used by bacteria. These studies demanded the functional characterization of two genes whose putative function had been annotated based solely on their homology to the bacterial genes encoding adenosylcobyric acid and adenosylcobinamide-phosphate synthases (cbiP and cbiB, respectively) of S. enterica. A cbiP mutant strain of the archaeon Halobacterium sp. strain NRC-1 was auxotrophic for adenosylcobyric acid, a known intermediate of the de novo cobamide biosynthesis pathway, but efficiently salvaged cobinamide from the environment, suggesting the existence of a salvaging pathway in this archaeon. A cbiB mutant strain of Halobacterium was auxotrophic for adenosylcobinamide-GDP, a known de novo intermediate, and did not salvage cobinamide. The results of the nutritional analyses of the cbiP and cbiB mutants suggested that the entry point for cobinamide salvaging is adenosylcobyric acid. The data are consistent with a salvaging pathway for cobinamide in which an amidohydrolase enzyme cleaves off the aminopropanol moiety of adenosylcobinamide to yield adenosylcobyric acid, which is converted by the adenosylcobinamide-phosphate synthase enzyme to adenosylcobinamide-phosphate, a known intermediate of the de novo biosynthetic pathway. The existence of an adenosylcobinamide amidohydrolase enzyme would explain the lack of an adenosylcobinamide kinase in archaea.


2014 ◽  
Vol 24 (10) ◽  
pp. 1421-1426 ◽  
Author(s):  
Xiao-Juan Xing ◽  
Yong-Sheng Tian ◽  
Ri-He Peng ◽  
Jing Xu ◽  
Wei Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document