scholarly journals Hopf Bifurcation and Stability Switches Induced by Humoral Immune Delay in Hepatitis C

2020 ◽  
Vol 51 (4) ◽  
pp. 1673-1695
Author(s):  
Sonjoy Pan ◽  
Siddhartha P. Chakrabarty
2020 ◽  
Vol 13 (05) ◽  
pp. 2050033
Author(s):  
Yan Geng ◽  
Jinhu Xu

In this paper, we study a delayed viral infection model with cellular infection and full logistic proliferations for both healthy and infected cells. The global asymptotic stabilities of the equilibria are studied by constructing Lyapunov functionals. Moreover, we investigated the existence of Hopf bifurcation at the infected equilibrium by regarding the possible combination of the two delays as bifurcation parameters. The results show that time delays may destabilize the infected equilibrium and lead to Hopf bifurcation. Finally, numerical simulations are carried out to illustrate the main results and explore the dynamics including Hopf bifurcation and stability switches.


Hepatology ◽  
1998 ◽  
Vol 28 (3) ◽  
pp. 810-814 ◽  
Author(s):  
Roberto Burioni ◽  
Paola Plaisant ◽  
Aldo Manzin ◽  
Domenico Rosa ◽  
Valeria Delli Carri ◽  
...  

1999 ◽  
Vol 121 (1) ◽  
pp. 105-109 ◽  
Author(s):  
M. Moh’d ◽  
K. Huseyin

This paper extends the bifurcation and stability analysis of the autonomous system considered in Part 1 to the case of a corresponding nonautonomous system. The effect of an external harmonic excitation on the Hopf bifurcation is studied via a modified Intrinsic Harmonic Balancing technique. It is observed that a shift in the critical value of the parameter occurs due to the external excitation. The analysis is carried out with the aid of MAPLE which is also instrumental in verifying the consistency of the approximations conveniently.


2018 ◽  
Vol 12 (2) ◽  
pp. 171
Author(s):  
Enobong E. Joshua ◽  
Cec Ekemini T. Akpan

This paper investigates the global asymptotic stability of a Delayed Extended Rosenzweig-MacArthur Model via Lyapunov-Krasovskii functionals. Frequency sweeping technique ensures stability switches as the delay parameter increases and passes the critical bifurcating threshold.The model exhibits a local Hopf-bifurcation from asymptotically stable oscillatory behaviors to unstable strange chaotic behaviors dependent of the delay parameter values.Hyper-chaotic fluctuations were observed for large delay values far away from the critical delay margin. Numerical simulations of experimental data obtained via non-dimensionalization have shown the applications of theoretical results in ecological population dynamics.


2018 ◽  
Vol 28 (11) ◽  
pp. 1850136 ◽  
Author(s):  
Ben Niu ◽  
Yuxiao Guo ◽  
Yanfei Du

Tumor-immune interaction plays an important role in the tumor treatment. We analyze the stability of steady states in a diffusive tumor-immune model with response and proliferation delay [Formula: see text] of immune system where the immune cell has a probability [Formula: see text] in killing tumor cells. We find increasing time delay [Formula: see text] destabilizes the positive steady state and induces Hopf bifurcations. The criticality of Hopf bifurcation is investigated by deriving normal forms on the center manifold, then the direction of bifurcation and stability of bifurcating periodic solutions are determined. Using a group of parameters to simulate the system, stable periodic solutions are found near the Hopf bifurcation. The effect of killing probability [Formula: see text] on Hopf bifurcation values is also discussed.


2003 ◽  
Vol 2003 (31) ◽  
pp. 1981-1991 ◽  
Author(s):  
Malay Bandyopadhyay ◽  
Rakhi Bhattacharya ◽  
C. G. Chakrabarti

The present paper dealing with the nonlinear bifurcation analysis of two-species oscillatory system consists of three parts. The first part deals with Hopf-bifurcation and limit cycle analysis of the homogeneous system. The second consists of travelling wave train solution and its linear stability analysis of the system in presence of diffusion. The last deals with an oscillatory chemical system as an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document