scholarly journals Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels

Author(s):  
János Flesch ◽  
P. Jean-Jacques Herings ◽  
Jasmine Maes ◽  
Arkadi Predtetchinski

AbstractWe study subgame $$\phi $$ ϕ -maxmin strategies in two-player zero-sum stochastic games with a countable state space, finite action spaces, and a bounded and universally measurable payoff function. Here, $$\phi $$ ϕ denotes the tolerance function that assigns a nonnegative tolerated error level to every subgame. Subgame $$\phi $$ ϕ -maxmin strategies are strategies of the maximizing player that guarantee the lower value in every subgame within the subgame-dependent tolerance level as given by $$\phi $$ ϕ . First, we provide necessary and sufficient conditions for a strategy to be a subgame $$\phi $$ ϕ -maxmin strategy. As a special case, we obtain a characterization for subgame maxmin strategies, i.e., strategies that exactly guarantee the lower value at every subgame. Secondly, we present sufficient conditions for the existence of a subgame $$\phi $$ ϕ -maxmin strategy. Finally, we show the possibly surprising result that each game admits a strictly positive tolerance function $$\phi ^*$$ ϕ ∗ with the following property: if a player has a subgame $$\phi ^*$$ ϕ ∗ -maxmin strategy, then he has a subgame maxmin strategy too. As a consequence, the existence of a subgame $$\phi $$ ϕ -maxmin strategy for every positive tolerance function $$\phi $$ ϕ is equivalent to the existence of a subgame maxmin strategy.


2018 ◽  
Vol 55 (3) ◽  
pp. 728-741 ◽  
Author(s):  
János Flesch ◽  
Arkadi Predtetchinski ◽  
William Sudderth

Abstract We consider positive zero-sum stochastic games with countable state and action spaces. For each player, we provide a characterization of those strategies that are optimal in every subgame. These characterizations are used to prove two simplification results. We show that if player 2 has an optimal strategy then he/she also has a stationary optimal strategy, and prove the same for player 1 under the assumption that the state space and player 2's action space are finite.



2018 ◽  
Vol 82 (2) ◽  
pp. 499-516
Author(s):  
János Flesch ◽  
Arkadi Predtetchinski ◽  
William Sudderth


2016 ◽  
Vol 15 (03) ◽  
pp. 1650049 ◽  
Author(s):  
Piyush Shroff ◽  
Sarah Witherspoon

We examine PBW deformations of finite group extensions of quantum symmetric algebras, in particular the quantum Drinfeld orbifold algebras defined by the first author. We give a homological interpretation, in terms of Gerstenhaber brackets, of the necessary and sufficient conditions on parameter functions to define a quantum Drinfeld orbifold algebra, thus clarifying the conditions. In case the acting group is trivial, we determine conditions under which such a PBW deformation is a generalized enveloping algebra of a color Lie algebra; our PBW deformations include these algebras as a special case.



2017 ◽  
Vol 54 (3) ◽  
pp. 963-969 ◽  
Author(s):  
Vadim Arkin ◽  
Alexander Slastnikov

Abstract We study a problem when the optimal stopping for a one-dimensional diffusion process is generated by a threshold strategy. Namely, we give necessary and sufficient conditions (on the diffusion process and the payoff function) under which a stopping set has a threshold structure.



1972 ◽  
Vol 9 (2) ◽  
pp. 451-456 ◽  
Author(s):  
Lennart Råde

This paper discusses the response process when a Poisson process interacts with a renewal process in such a way that one or more points of the Poisson process eliminate a random number of consecutive points of the renewal process. A queuing situation is devised such that the c.d.f. of the length of the busy period is the same as the c.d.f. of the length of time intervals of the renewal response process. The Laplace-Stieltjes transform is obtained and from this the expectation of the time intervals of the response process is derived. For a special case necessary and sufficient conditions for the response process to be a Poisson process are found.



2021 ◽  
Vol 14 (2) ◽  
pp. 380-395
Author(s):  
Jiramate Punpim ◽  
Somphong Jitman

Triangular numbers have been of interest and continuously studied due to their beautiful representations, nice properties, and various links with other figurate numbers. For positive integers n and l, the nth l-isosceles triangular number is a generalization of triangular numbers defined to be the arithmetic sum of the formT(n, l) = 1 + (1 + l) + (1 + 2l) + · · · + (1 + (n − 1)l).In this paper, we focus on characterizations and identities for isosceles triangular numbers as well as their links with other figurate numbers. Recursive formulas for constructions of isosceles triangular numbers are given together with necessary and sufficient conditions for a positive integer to be a sum of isosceles triangular  numbers. Various identities for isosceles triangular numbers are established. Results on triangular numbers can be viewed as a special case.



1970 ◽  
Vol 22 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Melvin Band

Let F be a local field with ring of integers and unique prime ideal (p). Suppose that V a finite-dimensional regular quadratic space over F, W and W′ are two isometric subspaces of V (i.e. τ: W → W′ is an isometry from W to W′). By the well-known Witt's Theorem, τ can always be extended to an isometry σ ∈ O(V).The integral analogue of this theorem has been solved over non-dyadic local fields by James and Rosenzweig [2], over the 2-adic fields by Trojan [4], and partially over the dyadics by Hsia [1], all for the special case that W is a line. In this paper we give necessary and sufficient conditions that two arbitrary dimensional subspaces W and W′ are integrally equivalent over non-dyadic local fields.



Author(s):  
Ibrahim Al-Dayel ◽  
Ahmad Al Khalaf

A group [Formula: see text] has the Basis Property if every subgroup [Formula: see text] of [Formula: see text] has an equivalent basis (minimal generating set). We studied a special case of the finite group with the Basis Property, when [Formula: see text]-group [Formula: see text] is an abelian group. We found the necessary and sufficient conditions on an abelian [Formula: see text]-group [Formula: see text] of [Formula: see text] with the Basis Property to be kernel of Frobenius group.



1978 ◽  
Vol 10 (2) ◽  
pp. 452-471 ◽  
Author(s):  
A. Federgruen

This paper considers non-cooperative N-person stochastic games with a countable state space and compact metric action spaces. We concentrate upon the average return per unit time criterion for which the existence of an equilibrium policy is established under a number of recurrency conditions with respect to the transition probability matrices associated with the stationary policies. These results are obtained by establishing the existence of total discounted return equilibrium policies, for each discount factor α ∈ [0, 1) and by showing that under each one of the aforementioned recurrency conditions, average return equilibrium policies appear as limit policies of sequences of discounted return equilibrium policies, with discount factor tending to one.Finally, we review and extend the results that are known for the case where both the state space and the action spaces are finite.



2008 ◽  
Vol 40 (04) ◽  
pp. 1198-1222
Author(s):  
Donatas Surgailis

We introduce a modification of the linear ARCH (LARCH) model (Giraitis, Robinson, and Surgailis (2000)) - a special case of Sentana's (1995) quadratic ARCH (QARCH) model - for which the conditional variance is a sum of a positive constant and the square of an inhomogeneous linear combination of past observations. Necessary and sufficient conditions for the existence of a stationary solution with finite variance are obtained. We give conditions under which the stationary solution with infinite fourth moment can exhibit long memory, the leverage effect, and a Lévy-stable limit behavior of partial sums of squares.



Sign in / Sign up

Export Citation Format

Share Document