IEC accelerator beam coordinate transformations for clinical Monte Carlo simulation from a phase space or full BEAMnrc particle source

2010 ◽  
Vol 33 (4) ◽  
pp. 351-355 ◽  
Author(s):  
Karl K. Bush ◽  
Sergei F. Zavgorodni
2020 ◽  
Vol 65 (1) ◽  
pp. 54-58
Author(s):  
T. Medjadj ◽  
A. Ksenofontov ◽  
A. Dalechina

Purpose: To develop an effective method of Monte Carlo simulation of the GammaKnife Perfexion system by rotating particles in the phase space file (PSF). This method does not require simulating of all 192 sources that are distributed in the conical form of the Perfexion collimator. The simulation was performed only for 5 out of 192 sources for each collimator size. Material and methods: Monte Carlo simulation of dose distribution for previous models of GammaKnife system requires phase space file for only one source, since this phase space is identical for all the 201 sources. The Perfexion model is more complex due to the non-coaxial positions of the sources and the complexity of the collimator system itself. In this work, we present an effective method to simulate the Perfexion model using a phase space file. Penelope Monte Carlo code was used to perform this simulation. In this method, the PSF was obtained for one source in each ring, resulting in five files for each collimator size. PSF for other sources were created by azimuthal redistribution of particles, in the obtained PSF, by rotation around the Z-axis. The phase space files of the same ring were then stored together in a single file. Results: The paper presented MC simulation using the azimuthal redistribution of particles in the phase space file by rotation around the Z-axis. The simulation has been validated comparing the dose profiles and output factors with the data of the algorithm TMR10 planning system Leksell Gamma Plan (LGP) in a homogeneous environment. The acceptance criterion between TMR10 and Monte Carlo calculations for the profiles was based on the gamma index (GI). Index values more than one were not detected in all cases, which indicates a good agreement of results. The differences between the output factors obtained in this work and the TMR10 data for collimators 8 mm and 4 mm are 0.74 and 0.73 %, respectively. Conclusion: In this work successfully implemented an effective method of simulating the Leksell Gamma knife Perfexion system. The presented method does not require modeling for all 192 sources distributed in the conical form of the Perfexion collimator. The simulation was performed for only five sources for each collimator and their files PSF were obtained. These files were used to create the PSF files for other sources by azimuthal redistribution of particles, in these files, by rotation around the Z-axis providing correct calculations of dose distributions in a homogeneous medium for 16, 8 and 4 mm collimators.


2014 ◽  
Vol 41 (5) ◽  
pp. 051707 ◽  
Author(s):  
Maria F. Belosi ◽  
Miguel Rodriguez ◽  
Antonella Fogliata ◽  
Luca Cozzi ◽  
Josep Sempau ◽  
...  

2019 ◽  
Vol 110 ◽  
pp. 142-147 ◽  
Author(s):  
M.S. Teixeira ◽  
D.V.S. Batista ◽  
D. Braz ◽  
L.A.R. da Rosa

1980 ◽  
Vol 169 (1) ◽  
pp. 199-213 ◽  
Author(s):  
C.L. Ruiz ◽  
R.W. Huggett ◽  
P.N. Kirk

Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document