scholarly journals The application of an environmental performance framework for climate adaptation innovations on two nature-based adaptations

AMBIO ◽  
2021 ◽  
Author(s):  
Jantsje M. van Loon-Steensma ◽  
Christopher Goldsworthy

AbstractIn this paper, we introduce and test a framework to qualitatively assess the environmental impact of climate adaptation innovations with the ambition to facilitate the implementation of these adaptations. The framework was designed to enable continuous environmentally conscious benchmarking based on three environmental performance indicators: sustainable design, environmental impact and ecological impact. It was pilot tested by uninvolved experts and key-persons for two large-scale nature-based flood adaptation innovations in the Netherlands and discussed with environmental assessment professionals. Our findings indicate how the inclusion of our framework helps to identify important knowledge gaps regarding environmental co-benefits and trade-offs, and can be beneficial to both those developing the innovation and the local authorities charged with assessing the suitability of innovations. We conclude by noting how the incorporation of environmental impact assessment from the design stage of adaptations could supplement existing environmental assessment regulations pre-empting concerns rather than reacting to them.

2018 ◽  
Vol 145 ◽  
pp. 757-768 ◽  
Author(s):  
Graeme F. Clark ◽  
Nathan A. Knott ◽  
Brett M. Miller ◽  
Brendan P. Kelaher ◽  
Melinda A. Coleman ◽  
...  

2015 ◽  
Vol 119 (1211) ◽  
pp. 67-90 ◽  
Author(s):  
F. Ali ◽  
I. Goulos ◽  
V. Pachidis

AbstractThis paper aims to present an integrated multidisciplinary simulation framework, deployed for the comprehensive assessment of combined helicopter–powerplant systems at mission level. Analytical evaluations of existing and conceptual regenerative engine designs are carried out in terms of operational performance and environmental impact. The proposed methodology comprises a wide-range of individual modeling theories applicable to helicopter flight dynamics, gas turbine engine performance as well as a novel, physics-based, stirred reactor model for the rapid estimation of various helicopter emissions species. The overall methodology has been deployed to conduct a preliminary trade-off study for a reference simple cycle and conceptual regenerative twin-engine light helicopter, modeled after the Airbus Helicopters Bo105 configuration, simulated under the representative mission scenarios. Extensive comparisons are carried out and presented for the aforementioned helicopters at both engine and mission level, along with general flight performance charts including the payload-range diagram. The acquired results from the design trade-off study suggest that the conceptual regenerative helicopter can offer significant improvement in the payload-range capability, while simultaneously maintaining the required airworthiness requirements. Furthermore, it has been quantified through the implementation of a representative case study that, while the regenerative configuration can enhance the mission range and payload capabilities of the helicopter, it may have a detrimental effect on the mission emissions inventory, specifically for NOx(Nitrogen Oxides). This may impose a trade-off between the fuel economy and environmental performance of the helicopter. The proposed methodology can effectively be regarded as an enabling technology for the comprehensive assessment of conventional and conceptual helicopter-powerplant systems, in terms of operational performance and environmental impact as well as towards the quantification of their associated trade-offs at mission level.


2019 ◽  
Vol 11 (23) ◽  
pp. 6657 ◽  
Author(s):  
Solhee Kim ◽  
Rylie E. O. Pelton ◽  
Timothy M. Smith ◽  
Jimin Lee ◽  
Jeongbae Jeon ◽  
...  

The environmental impact of battery electric vehicles (BEVs) largely depends on the environmental profile of the national electric power grid that enables their operation. The purpose of this study is to analyze the environmental performance of BEV usage in Korea considering the changes and trajectory of the national power roadmap. We examined the environmental performance using a weighted environmental index, considering eight impact categories. The results showed that the weighted environmental impact of Korea’s national power grid supply would increase overall by 66% from 2015 to 2029 using the plan laid out by the 7th Power Roadmap, and by only 33% from 2017 to 2031 using the 8th Power Roadmap plan. This change reflects the substantial amount of renewables in the more recent power mix plan. In 2016, BEV usage in Korea resulted in emissions reductions of about 37% compared with diesel passenger vehicles, and 41% compared with gasoline vehicles per kilometer driven (100 g CO2e/km versus 158 g and 170 g CO2e/km, respectively) related to transportation sector. By 2030, BEV usage in Korea is expected to achieve a greater emissions reduction of about 53% compared with diesel vehicles and 56% compared with gasoline vehicles. However, trade-offs are also expected because of increased particulate matter (PM) pollution, which we anticipate to increase by 84% compared with 2016 conditions. Despite these projected increases in PM emissions, increased BEV usage in Korea is expected to result in important global and local benefits through reductions of climate-changing greenhouse gas (GHG) emissions.


2019 ◽  
Vol 8 (5) ◽  
pp. 383 ◽  
Author(s):  
Toktam B. Tabrizi ◽  
Arianna Brambilla

Life Cycle Assessment (LCA), developed over 30 years ago, has been helpful in addressing a growing concern about the direct and indirect environmental impact of buildings over their lifetime. However, lack of reliable, available, comparable and consistent information on the life cycle environmental performance of buildings makes it very difficult for architects and engineers to apply this method in the early stages of building design when the most important decisions in relation to a building’s environmental impact are made. The LCA quantification method with need of employing complex tools and an enormous amount of data is unfeasible for small or individual building projects. This study discusses the possibility of the development of a tool that allows building designers to more easily apply the logic of LCA at the early design stage. Minimising data requirements and identifying the most effective parameters that promise to make the most difference, are the key points of simplification method. The conventional LCA framework and knowledge-based system are employed through the simplification process. Results of previous LCA studies in Australia are used as the specific knowledge that enable the system to generate outputs based on the user’s inputs.Keywords: Life Cycle Assessment (LCA), early design stage, most effective parameters, life cycle environmental performance


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 99
Author(s):  
Grant Mosey ◽  
Brian Deal

The United States faces twin crises of housing affordability and environmental degradation. Under these clouds, the nation is experiencing an explosive growth in new construction multi-family housing. This paper seeks to evaluate how designers might optimize the organization of such projects to minimize cost and maximize environmental performance. A method is developed for evaluating the construction costs and environmental performance of multifamily developments across four variables: building height, number of buildings, building width, and building floor area. Our analysis suggests that buildings with deeper floor plates are preferable for both economic and environmental reasons. We also suggest that taller buildings have more performative envelopes while shorter buildings are more economical to construct. Finally, we offer a method of finding a compromise between economic and environmental objectives for projects of a given square footage. Most commonly, this “compromise” takes the form of a moderate number of mid-rise buildings with deep floor plates. This investigation adds nuance to the existing literature on the effects of building shape on building cost and envelope performance. It also provides designers with a method of potentially constructing multifamily buildings in a less expensive and more environmentally conscious way.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4760
Author(s):  
Jie Liu ◽  
Chunhui Yuan ◽  
Xiaolong Li

Under the new situation of economic development in China, the logistics industry is facing unbalanced development regarding economic and environmental performance. From the enterprise level, this study investigated the sustainability of Chinese logistics based on the environmental assessment data envelopment analysis (DEA) model, and measured the unified efficiency of a logistics company under two different production arrangement strategies. The empirical measurement provides several findings. First, logistics enterprises give higher priority to operational benefits than environmental performance. Second, under the operational priority of production arrangement, small and medium-sized enterprises’ (SMEs) unified efficiency is better than a large enterprise, and private enterprises’ unified efficiency is better than state-owned enterprises. Moreover, the empirical study has further proved that the sustainability development of Chinese logistics is still at the primary stage; when facing trade-offs in the sustainability context, logistics companies still prioritize operational performance first. Therefore, transforming corporate strategy into an environmental sustainable priority and realizing logistics sustainability still has a long way to go, which is the backbone of realizing balanced development of both the economy and environment.


Author(s):  
Alexandra Jiricka-Pürrer ◽  
Patrick Driscoll ◽  
Thomas F. Wachter

Consideration of climate change in Environmental Impact Assessment (EIA) is a rather novel topic, which became partly mandatory through the revised EU Directive on EIA. Through a mixed-methods approach involving key-actors from EIA practice, decision making and climate adaptation planning, this study presents a transdisciplinary point of view on barriers and opportunities to tackle climate change adaptation in environmental assessment of large-scale projects. It is based on both a retrospective ex-post evaluation of existing practices in Austria and Germany as well as prescriptive examination and development of outcomes for practice through the development of a climate-fit toolkit that supports the incorporation of climate change impacts into EIAs. The scenario analysis applied with a back casting approach provided the opportunity to look beyond limitations related to legal compliance and partly lack of data identified by previous research. Three scenario narratives were elaborated based on nine key impact factors based on literature review, content analysis of EIA documents and interviews with EIA actors. The groups of actors carried out a prioritization of actions towards consideration of climate change in EIA. Finally, the actors were involved in co-production of an online tool-kit for Austrian and German EIA practice.


2021 ◽  
Vol 13 (1) ◽  
pp. 389
Author(s):  
Chima Cyril Hampo ◽  
Ainul Bt Akmar ◽  
Mohd Amin Abd Majid

District cooling (DC) systems have recently proven to be more economically and environmentally viable as compared to conventional cooling techniques. In most DC setups, electric centrifugal chillers (ECCs) are installed to provide chilled water (CW) to charge the thermal energy storage (TES) tank or for direct CW supply to the DC network. The operation of these ECC systems consumes most of the electrical power supplied to the entire DC plant; this therefore strengthens the need to conduct a comprehensive environmental assessment in order to quantify the indirect ecological impact resulting from the energy consumed in the ECC system operation. In order to achieve this, a case study was conducted of four ECC systems with a use-life of 25 years installed in a large DC plant in Malaysia. A gate-to-gate life cycle assessment (LCA) methodology was adopted to analyze the environmental performance of the system setup. The result of the study year reveals that April and June account for the highest and lowest environmental impact, respectively. The influence of climatic temperature conditions on the monthly cooling and environmental load distribution was also observed from the results. Finally, in substantiating the study’s investigation, environmental performance based on the composition of two different electricity fuel mixes is discussed and compared. The results revealed a drastic decrease in environmental load as the ratio of non-renewable energy sources decreased in the composition of the mix, thereby reducing the contribution of the overall environmental impact of the ECC systems’ use phase.


2019 ◽  
Vol 11 (15) ◽  
pp. 4002
Author(s):  
Alexandra Jiricka-Pürrer ◽  
Thomas F. Wachter ◽  
Patrick Driscoll

Consideration of climate change in environmental impact assessment (EIA) is a rather novel topic, which became partly mandatory through the revised EU Directive on EIA. Through a mixed-methods approach involving key-actors from EIA practice, decision making and climate adaptation planning, this study presents a transdisciplinary point of view on barriers and opportunities to tackle climate change adaptation in the environmental assessment of large-scale projects. It is based on both a retrospective ex-post evaluation of existing practices in Austria and Germany as well as prescriptive examination and development of outcomes for practice through the development of a climate-fit toolkit that supports the incorporation of climate change impacts into EIAs. The scenario analysis applied with a backcasting approach provided the opportunity to look beyond limitations related to legal compliance and partly lack of data identified by previous research. Three scenario narratives were elaborated based on nine key impact factors based on literature review, content analysis of EIA documents and interviews with EIA actors. The groups of actors carried out a prioritization of actions towards consideration of climate change in EIA. Finally, the actors were involved in co-production of an online tool-kit for Austrian and German EIA practice.


Sign in / Sign up

Export Citation Format

Share Document