scholarly journals Statistical evaluation of a new resistance model for cold-formed stainless steel cross-sections subjected to web crippling

2015 ◽  
Vol 15 (1) ◽  
pp. 227-244 ◽  
Author(s):  
M. Bock ◽  
F. X. Mirada ◽  
E. Real
2020 ◽  
Vol 56 (4) ◽  
pp. 3444-3454
Author(s):  
Felix Weber ◽  
Markus Rettenmayr

Abstract Active brazing is a commonly used method for joining dissimilar materials with at least one non-metallic component. In the present study, joining of SiO2 glass to 316L stainless steel was performed utilizing Bi–Ag-based solders. Ti up to a concentration of 4 and Mg up to 1 wt.% were added as active elements. Microstructures of the solder alloys in the as-cast state and of cross sections of the joined compounds were analysed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. In the as-cast state of the solder, Ti is found in Bi–Ti intermetallic phases; Mg is partially dissolved in the fcc-(Ag) phase and additionally contained in a ternary Ag-Bi-Mg phase. After soldering, a tight joint was generated using several alloy compositions. Ti leads to the formation of reaction products at the steel/solder and glass/solder interfaces, and Mg is exclusively accumulated at the glass/solder interface.


2018 ◽  
Vol 2 (3) ◽  
pp. 55 ◽  
Author(s):  
Piera Alvarez ◽  
M. Montealegre ◽  
Jose Pulido-Jiménez ◽  
Jon Arrizubieta

Laser Cladding is one of the leading processes within Additive Manufacturing technologies, which has concentrated a considerable amount of effort on its development. In regard to the latter, the current study aims to summarize the influence of the most relevant process parameters in the laser cladding processing of single and compound volumes (solid forms) made from AISI 316L stainless steel powders and using a coaxial nozzle for their deposition. Process speed, applied laser power and powder flow are considered to be the main variables affecting the laser cladding in single clads, whereas overlap percentage and overlapping strategy also become relevant when dealing with multiple clads. By setting appropriate values for each process parameter, the main goal of this paper is to develop a processing window in which a good metallurgical bond between the delivered powder and the substrate is obtained, trying simultaneously to maintain processing times at their lowest value possible. Conventional metallography techniques were performed on the cross sections of the laser tracks to measure the effective dimensions of clads, height and width, as well as the resulting dilution value. Besides the influence of the overlap between contiguous clads and layers, physical defects such as porosity and cracks were also evaluated. Optimum process parameters to maximize productivity were defined as 13 mm/s, 2500 W, 30% of overlap and a 25 g/min powder feed rate.


2016 ◽  
Vol 107 ◽  
pp. 362-376 ◽  
Author(s):  
Shameem Ahmed ◽  
Mahmud Ashraf ◽  
Mohammad Anwar-Us-Saadat

2009 ◽  
Vol 410-411 ◽  
pp. 87-96 ◽  
Author(s):  
Markku Keskitalo ◽  
Kari Mäntyjärvi

The laser weldability of austenitic stainless steel (ASS) is good because of the material’s high absorptivity and favourable microstructure. There can be a slight possibility of solidification cracking at high welding speeds and low Crekv/Niekv ratios. Test welds were welded with a Yb:YAG disc laser. The test material was 3.2 mm EN 1.4404 2H C700 type stainless steel plate which was work hardened by cold rolling. The test materials were welded with different heat inputs ranging from 0.024 kJ/mm to 0.12 kJ/mm and with 300 mm and 200 mm focal lengths. The weld seams were square-groove welded as butt weld without filler material. The edges of the groove were made by mechanical or laser cutting. The hardness profiles from cross-sections of the welds were measured with a Vickers microhardness tester using 200 g weight. The mechanical properties were tested with tensile tests. The welds were classified with radiographic verification by an accredited laboratory. A number of the welds were fatigue tested with a bending fatigue tester. The mechanical properties (Rp 0.2%, Rm) of the laser welds were almost the same as in the base material except at the highest heat input. In the radiographic classification, the welds which were welded to the laser-cut edge were classified as class B (accepted). The other welds were classified as class D or C (rejected). The main reasons for the rejection of welds made on mechanically cut edges were lack of penetration or undercut of the weld. A problem with mechanically cut edges, and hence the welds, is that they can be non-square and bent edge. Fatigue tests and tensile tests gave no evidence of solidification cracking in the microstructure of the solidified parts of the welds.


Sign in / Sign up

Export Citation Format

Share Document