Crack identification method for tapered cantilever pipe-type beam using natural frequencies

2016 ◽  
Vol 16 (2) ◽  
pp. 467-476 ◽  
Author(s):  
Jong-Won Lee
2011 ◽  
Vol 80-81 ◽  
pp. 527-531 ◽  
Author(s):  
Yu Min He ◽  
Xi Chen ◽  
Xiao Long Zhang

Pipe crack identification method based on vibration has been researched by many people in recent years. The natural frequency plays an important role in the method. The natural frequency will change due to the appearance of the crack, so the crack may be identified according to the change law of the natural frequency with the size and location of crack. The dynamic model of cracked pipe is established by dispersing the pipe into a series of nested thin-walled pipes in this paper, and then the change law of the first three natural frequencies of the pipe is discussed.


2014 ◽  
Vol 36 (2) ◽  
pp. 119-132
Author(s):  
Nguyen Tien Khiem ◽  
Duong The Hung ◽  
Vu Thi An Ninh

A new approach is proposed for calculating natural frequencies and crack detection in a stepped cantilever beam with arbitrary number of cracks. This is based an explicit expression of the natural frequencies in term of crack parameter derived in the form similar to the so-called Rayleigh quotient for vibrating beam. The obtained simple relationship between natural frequencies and crack parameters enables not only accurate calculating the natural frequencies but also to develop an efficient procedure for detecting multiple cracks from given natural frequencies. The proposed technique called crack scanning method is illustrated and validated by numerical results.


2020 ◽  
pp. 107754632096031
Author(s):  
Masoud Kharazan ◽  
Saied Irani ◽  
Mohammad Ali Noorian ◽  
Mohammad Reza Salimi

The attempts to identify damping changes in a cracked beam can improve the accuracy of the nonlinear crack identification method. For the purpose of this aim, a parametric nonlinear equation of motion is obtained using the Euler–Bernoulli beam theory and parametric nonlinear breathing crack assumptions. Several experiments were conducted to identify the effect of breathing cracks on changing the damping value in nonlinear vibrations of a cracked beam. Experimental tests have revealed that increasing the crack depth and the level of excitation enlarges the damping coefficient in a vibrating beam. For this reason, the effects of the excitation force and crack depth on the structural damping coefficient are investigated. The obtained results indicated that considering the nonlinear response of a cracked beam and measuring the value of the damping changes can significantly improve the accuracy of the nonlinear crack identification method.


2017 ◽  
Vol 17 (10) ◽  
pp. 1750111
Author(s):  
Ugurcan Eroglu ◽  
Ekrem Tufekci

In this paper, a procedure based on the transfer matrix method for obtaining the exact solution to the equations of free vibration of damaged frame structures, considering the effects of axial extension, shear deformation, rotatory inertia, and all compliance components arising due to the presence of a crack, is presented. The crack is modeled by a rotational and/or translational spring based on the concept of linear elastic fracture mechanics. Only the in-plane motion of planar structures is considered. The formulation is validated through some examples existing in the literature. Additionally, the mode shapes and natural frequencies of a frame with pitched roof are provided. The variation of natural frequencies with respect to the crack location is presented. It is concluded that considering the axial compliance, and axial-bending coupling due to the presence of a crack results in different dynamic characteristics, which should be considered for problems where high precision is required, such as for the crack identification problems.


Sign in / Sign up

Export Citation Format

Share Document