scholarly journals Development of a rapid test for detection of foot-and-mouth disease virus specific antibodies using gold nanoparticles

VirusDisease ◽  
2018 ◽  
Vol 29 (2) ◽  
pp. 192-198 ◽  
Author(s):  
Beenu Jain ◽  
Upendra Lambe ◽  
Anuj Tewari ◽  
Surender Kumar Kadian ◽  
Minakshi Prasad
Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 338
Author(s):  
Jessica Swanson ◽  
Rennos Fragkoudis ◽  
Philippa C. Hawes ◽  
Joseph Newman ◽  
Alison Burman ◽  
...  

The picornavirus foot-and-mouth disease virus (FMDV) is the causative agent of the economically important disease of livestock, foot-and-mouth disease (FMD). VP4 is a highly conserved capsid protein, which is important during virus entry. Previous published work has shown that antibodies targeting the N-terminus of VP4 of the picornavirus human rhinovirus are broadly neutralising. In addition, previous studies showed that immunisation with the N-terminal 20 amino acids of enterovirus A71 VP4 displayed on the hepatitis B core (HBc) virus-like particles (VLP) can induce cross-genotype neutralisation. To investigate if a similar neutralising response against FMDV VP4 could be generated, HBc VLPs displaying the N-terminus of FMDV VP4 were designed. The N-terminal 15 amino acids of FMDV VP4 was inserted into the major immunodominant region. HBc VLPs were also decorated with peptides of the N-terminus of FMDV VP4 attached using a HBc-spike binding tag. Both types of VLPs were used to immunise mice and the resulting serum was investigated for VP4-specific antibodies. The VLP with VP4 inserted into the spike, induced VP4-specific antibodies, however the VLPs with peptides attached to the spikes did not. The VP4-specific antibodies could recognise native FMDV, but virus neutralisation was not demonstrated. This work shows that the HBc VLP presents a useful tool for the presentation of FMDV capsid epitopes.


Gold Bulletin ◽  
2015 ◽  
Vol 48 (1-2) ◽  
pp. 93-101 ◽  
Author(s):  
Lev A. Dykman ◽  
Sergey A. Staroverov ◽  
Pavel V. Mezhenny ◽  
Alexander S. Fomin ◽  
Sergey V. Kozlov ◽  
...  

2016 ◽  
Vol 15 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Solmaz Rafiei ◽  
Seyedeh Elham Rezatofighi ◽  
Mohammad Roayaei Ardakani ◽  
Saadat Rastegarzadeh

2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Mervat E. Hamdy ◽  
Michele Del Carlo ◽  
Hussein A. Hussein ◽  
Taher A. Salah ◽  
Ayman H. El-Deeb ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1921
Author(s):  
Jong-Won Kim ◽  
Myeongkun Kim ◽  
Kyung Kwan Lee ◽  
Kwang Hyo Chung ◽  
Chang-Soo Lee

The polymerase chain reaction (PCR) has become a powerful molecular diagnostic technique over the past few decades, but remains somewhat impaired due to low specificity, poor sensitivity, and false positive results. Metal and carbon nanomaterials, quantum dots, and metal oxides, can improve the quality and productivity of PCR assays. Here, we describe the ability of PCR assisted with nanomaterials (nano-PCR) comprising a nanocomposite of graphene oxide (GO) and gold nanoparticles (AuNPs) for sensitive detection of the foot-and-mouth disease virus (FMDV). Graphene oxide and AuNPs have been widely applied as biomedical materials for diagnosis, therapy, and drug delivery due to their unique chemical and physical properties. Foot-and-mouth disease (FMD) is highly contagious and fatal for cloven-hoofed animals including pigs, and it can thus seriously damage the swine industry. Therefore, a highly sensitive, specific, and practical method is needed to detect FMDV. The detection limit of real-time PCR improved by ~1000 fold when assisted by GO-AuNPs. We also designed a system of detecting serotypes in a single assay based on melting temperatures. Our sensitive and specific nano-PCR system can be applied to diagnose early FMDV infection, and thus may prove to be useful for clinical and biomedical applications.


Vaccine ◽  
2002 ◽  
Vol 20 (7-8) ◽  
pp. 1163-1168 ◽  
Author(s):  
P.K Patil ◽  
V Suryanarayana ◽  
Pradeep Bist ◽  
Jagdeesh Bayry ◽  
C Natarajan

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 264
Author(s):  
Jong-Won Kim ◽  
Kyoung-Woo Park ◽  
Myeongkun Kim ◽  
Kyung Kwan Lee ◽  
Chang-Soo Lee

Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of rapid results, isothermal reaction conditions, and high sensitivity. However, this diagnostic system often produces false positive results due to a high rate of non-specific reactions caused by formation of hairpin structures, self-dimers, and mismatched hybridization. The non-specific signals can be due to primers used in the methods because the utilization of multiple LAMP primers increases the possibility of self-annealing of primers or mismatches between primers and templates. In this study, we report a nanomaterial-assisted LAMP method that uses a graphene oxide–gold nanoparticles (AuNPs@GO) nanocomposite to enable the detection of foot-and-mouth disease virus (FMDV) with high sensitivity and specificity. Foot-and-mouth disease (FMD) is a highly contagious and deadly disease in cloven-hoofed animals; hence, a rapid, sensitive, and specific detection method is necessary. The proposed approach exhibited high sensitivity and successful reduction of non-specific signals compared to the traditionally established LAMP assays. Additionally, a mechanism study revealed that these results arose from the adsorption of single-stranded DNA on AuNPs@GO nanocomposite. Thus, AuNPs@GO nanocomposite is demonstrated to be a promising additive in the LAMP system to achieve highly sensitive and specific detection of diverse diseases, including FMD.


Sign in / Sign up

Export Citation Format

Share Document