Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L.)

Author(s):  
Honglin Chen ◽  
Liangliang Hu ◽  
Lixia Wang ◽  
Suhua Wang ◽  
Xuzhen Cheng
2014 ◽  
Vol 57 (4) ◽  
pp. 348-358 ◽  
Author(s):  
Mariam Charfeddine ◽  
Mohamed Najib Saïdi ◽  
Safa Charfeddine ◽  
Asma Hammami ◽  
Radhia Gargouri Bouzid

2021 ◽  
Vol 22 (6) ◽  
pp. 2821
Author(s):  
Lixia Zhou ◽  
Rajesh Yarra

The AP2/ERF transcription factor family members play crucial roles in controlling plant growth and development, as well as responses to various abiotic stresses. Genome-wide identification and characterization of AP2/ERF genes has not yet been carried out in the oil palm genome. In the present work, we reported the occurrence of 172 EgAP2/ERFs (AP2, ERF, RAV & Soloist members) through genome-wide identification. Phylogenetic analysis was used to divide them into four groups, including: 34 AP2, 131 ERF, 5 RAV, and 2 Soloist gene family members. All 172 AP2/ERF members were unevenly distributed across 16 chromosomes of oil palm. Gene duplication analysis elucidated the tandem duplication of AP2/ERFs on chromosome blocks of the oil palm genome during evolution. Gene structure as well as conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements—related to hormone, stress, and defense responses—were identified in the promoter regions of AP2/ERFs. Tissue-specific expression of 172 AP2/ERFs in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Finally, abiotic stress (salinity, cold & drought)-responsive AP2/ERFs in the oil palm genome were validated through qPCR analysis. Our study provided valuable information on oil palm AP2/ERF superfamily members and dissected their role in abiotic stress conditions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lili Yin ◽  
Meiling Zhang ◽  
Ruigang Wu ◽  
Xiaoliang Chen ◽  
Fei Liu ◽  
...  

Abstract Background Mung bean (Vigna radiata) is a warm-season legume crop and belongs to the papilionoid subfamily of the Fabaceae family. China is the leading producer of mung bean in the world. Mung bean has significant economic and health benefits and is a promising species with broad adaptation ability and high tolerance to environmental stresses. OSCA (hyperosmolality-gated calcium-permeable channel) gene family members play an important role in the modulation of hypertonic stress, such as drought and salinity. However, genome-wide analysis of the OSCA gene family has not been conducted in mung bean. Results We identified a total of 13 OSCA genes in the mung bean genome and named them according to their homology with AtOSCAs. All the OSCAs were phylogenetically split into four clades. Phylogenetic relationship and synteny analyses showed that the VrOSCAs in mung bean and soybean shared a relatively conserved evolutionary history. In addition, three duplicated VrOSCA gene pairs were identified, and the duplicated VrOSCAs gene pairs mainly underwent purifying selection pressure during evolution. Protein domain, motif and transmembrane analyses indicated that most of the VrOSCAs shared similar structures with their homologs. The expression pattern showed that except for VrOSCA2.1, the other 12 VrOSCAs were upregulated under treatment with ABA, PEG and NaCl, among which VrOSCA1.4 showed the largest increased expression levels. The duplicated genes VrOSCA2.1/VrOSCA2.2 showed divergent expression, which might have resulted in functionalization during subsequent evolution. The expression profiles under ABA, PEG and NaCl stress revealed a functional divergence of VrOSCA genes, which agreed with the analysis of cis-acting regulatory elements in the promoter regions of VrOSCA genes. Conclusions Collectively, the study provided a systematic analysis of the VrOSCA gene family in mung bean. Our results establish an important foundation for functional and evolutionary analysis of VrOSCAs and identify genes for further investigation of their ability to confer abiotic stress tolerance in mung bean.


Sign in / Sign up

Export Citation Format

Share Document