Experimental Studies of Flow Fields in Internal Combustion Engines

2012 ◽  
Vol 38 (2) ◽  
pp. 301-316
Author(s):  
Lucky Anetor ◽  
Christopher Odetunde ◽  
Edward Osakue
2018 ◽  
Vol 182 ◽  
pp. 01027
Author(s):  
Jan Monieta

The intensity of infrared radiation emitted by objects depends mainly on their temperature. One of the diagnostic signals may be the temperature field. In infrared thermography, this quantity is used as an indicator of the technical condition of marine objects. The article presents an overview of the use of infrared thermography for the diagnosis mainly of marine piston floating objects and various types of reciprocating internal combustion engines as well as examples of own research results. A general introduction to infrared thermography and common procedures for temperature measurement and non-destructive testing are presented. Experimental research was carried out both in laboratory conditions and in the operating conditions of sea-going vessels. Experimental studies consisted of the presentation of photographs of the same objects made in visible light and the use of infrared thermography. The same objects were also compared, but for different cylinders of the tested internal combustion engines as well as for the up state and fault state. The characteristics of the temperature values at selected points were taken depending on the engine load along with the approximation mathematical models of these dependencies.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


Author(s):  
A. A. Kondratiuk ◽  

The paper presents the results of theoretical and experimental studies of the environmental characteristics of internal combustion engines of commercial and municipal vehicles operating on the Diesel cycle using a hydrogen additive. The analysis of literature sources has confirmed that there are different data regarding harmful emissions when using hydrogen additives for internal combustion engines running on the Diesel cycle. Therewith, data on harmful emissions of nitrogen oxides NOx differ significantly. The results of theoretical and experimental studies of the environmental characteristics of internal combustion engines of commercial and municipal vehicles operating on a Diesel cycle using a hydrogen additive, allow to assert the adequacy of the model, since the error between the theoretical and experimental data did not exceed 14,5 %. It has been found out that the concentration of NOx emissions in an internal combustion engine using a hydrogen additive, working on a Diesel cycle, has decreased by 52 %.The research results confirm the prospects of using a hydrogen additive, which is done for the first time for internal combustion engines running on the Diesel cycle in commercial and municipal vehicles. This guarantees increased environmental safety in urban agglomerations.


Author(s):  
S Verhelst ◽  
S Verstraeten ◽  
R Sierens

Realizing decreased CO2 emissions from the transport sector will be possible in the near future when substituting (part of) the currently used hydrocarbon-fuelled internal combustion engines (ICEs) with hydrogen-fuelled ICEs. Hydrogen-fuelled ICEs have advanced to such a stage that, from the engine point of view, there are no major obstacles to doing this. The present paper indicates the advantages of hydrogen as a fuel for spark ignition (SI) internal combustion engines. It also shows how the hydrogen engine has matured. An extensive overview is given of the literature on experimental studies of abnormal combustion phenomena, mixture formation techniques, and load control strategies for hydrogen-fuelled engines. The Transport Technology research group of the Department of Flow, Heat and Combustion Mechanics at Ghent University has been working on the development and optimization of hydrogen engines for 15 years. An overview of the most important experimental results is presented with special focus on the most recent findings. The article concludes with a list of engine design features of dedicated hydrogen SI engines.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022045
Author(s):  
I Yaitskov ◽  
A Nazaretov ◽  
A Kochetkov

Abstract The paper presents the obtained results of the vibration studies, particularly, the structural elements of the railway rolling stock, created at the driver workplaces, structures of the internal combustion engines, hoods, frames while moving and a stationary machine, which determine the vibration spectral composition and propose the specific engineering solutions for the noise and vibration protection system.


Author(s):  
Charles E. A. Finney ◽  
K. Dean Edwards ◽  
Miroslav K. Stoyanov ◽  
Robert M. Wagner

Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allow rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE™ CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme is chosen similar to a design of experiments grid but uses algorithms designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional ‘metamodel’ (or model of a model) which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark-ignition combustion cycles within a parametric sampling grid were performed and analyzed statistically, and sensitivities of the physical factors leading to high CV are presented. With these results, the prospect of producing low-dimensional metamodels to describe engine dynamics at any point in the parameter space will be discussed. Additionally, modifications to the methodology to account for nondeterministic effects in the numerical solution environment are proposed.


2021 ◽  
Vol 20 (3) ◽  
pp. 97-109
Author(s):  
V. V. Biryuk ◽  
A. A. Gorshkalev ◽  
M. O. Zakharov ◽  
V. L. Larin

On the basis of the available theoretical calculations, methods for calculating the working process and power characteristics of internal combustion engines and the experimental studies carried out, a method for calculating the working process for small-sized two-stroke internal combustion engines was developed and tested. In the course of this work, the following results were obtained: the parameters of the working process and power characteristics of a small two-stroke internal combustion engine; the parameters obtained by calculation during the study of the Evolution 20GX2 engine were compared with the results of an experimental study. According to the results of the comparison, deviations in the values of the parameters of the engine under study from the results of the experimental study at the maximum power and maximum speed modes were identified.


2020 ◽  
Vol 17 (5) ◽  
pp. 550-561
Author(s):  
R. F. Salikhov ◽  
V. N. Kuznetsova ◽  
V. V. Dubkov

Introduction. The implementation of production and technological processes of machines on the vast territory of the Russian Federation is related to the necessity to operate them in low temperatures conditions. The article presents the results of the applied scientific research of the factors that have a negative impact on the operation process of internal combustion engines at low ambient temperatures. The use of the modern methods and means of diagnostics of the cylinder-piston group and the crank- engine mechanism make it possible to reliably establish the causes of the internal combustion engines failures.Materials and methods. In the course of the experimental studies the non-destructive testing, organoleptic, measuring and expert methods were used.Results. As a result of a comprehensive assessment of the engine failures causes, it was found that the breakdowns in the use of inappropriate operating materials at low temperatures, measures to prepare for the launch of diesel generator sets were the main reason for untimely start-up and the faults in cylinder-piston group and the crank mechanism elements, which led to emergency failure of the internal combustion engine.Discussion and conclusion. The proposed research results will make it possible to specificate the development prospects in the field of providing the reliability of internal combustion engines operation. 


Sign in / Sign up

Export Citation Format

Share Document