Data-Driven Short-Term Forecasting for Urban Road Network Traffic Based on Data Processing and LSTM-RNN

2018 ◽  
Vol 44 (4) ◽  
pp. 3043-3060 ◽  
Author(s):  
Wang Xiangxue ◽  
Xu Lunhui ◽  
Chen Kaixun
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Huaikun Xiang

The vulnerability of an urban road network is affected by many factors, such as internal road network layout, network structure strength, and external destructive events, which have great uncertainty and complexity. Thus, there is still no unified and definite vulnerability analysis scheme available to cities. This paper proposes an integrative vulnerability identification method for urban road networks, which mainly relates to the vulnerability connotation and characteristics analysis of urban road networks during emergency, and vulnerability comprehensive evaluation indices design based on urban road network connectivity, traffic efficiency and performance, and an empirical study on a vulnerability identification method of an urban road network. In the empirical case, a real road network and traffic operation data were used from Science and Technology Park of Shenzhen City, China. In the context of one certain emergency scenario, the stated preference survey method and maximum likelihood method are used to solve the road users’ random travel choice behavior parameters; subsequently, based on the traffic equilibrium distribution prediction, the traffic vulnerability identification methods of the road network in this region were verified before and after the emergency. The method presented here not only considers the impact of network topology changes on road network traffic function during emergency but also considers the impact of dynamic changes in road network traffic demand on vulnerability; therefore, it is closer to the actual distribution of urban road network traffic vulnerability.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1412
Author(s):  
Ei Ei Mon ◽  
Hideya Ochiai ◽  
Chaiyachet Saivichit ◽  
Chaodit Aswakul

The traffic bottlenecks in urban road networks are more challenging to investigate and discover than in freeways or simple arterial networks. A bottleneck indicates the congestion evolution and queue formation, which consequently disturb travel delay and degrade the urban traffic environment and safety. For urban road networks, sensors are needed to cover a wide range of areas, especially for bottleneck and gridlock analysis, requiring high installation and maintenance costs. The emerging widespread availability of GPS vehicles significantly helps to overcome the geographic coverage and spacing limitations of traditional fixed-location detector data. Therefore, this study investigated GPS vehicles that have passed through the links in the simulated gridlock-looped intersection area. The sample size estimation is fundamental to any traffic engineering analysis. Therefore, this study tried a different number of sample sizes to analyze the severe congestion state of gridlock. Traffic condition prediction is one of the primary components of intelligent transportation systems. In this study, the Long Short-Term Memory (LSTM) neural network was applied to predict gridlock based on bottleneck states of intersections in the simulated urban road network. This study chose to work on the Chula-Sathorn SUMO Simulator (Chula-SSS) dataset. It was calibrated with the past actual traffic data collection by using the Simulation of Urban MObility (SUMO) software. The experiments show that LSTM provides satisfactory results for gridlock prediction with temporal dependencies. The reported prediction error is based on long-range time dependencies on the respective sample sizes using the calibrated Chula-SSS dataset. On the other hand, the low sampling rate of GPS trajectories gives high RMSE and MAE error, but with reduced computation time. Analyzing the percentage of simulated GPS data with different random seed numbers suggests the possibility of gridlock identification and reports satisfying prediction errors.


Sign in / Sign up

Export Citation Format

Share Document