Mechanical and Dynamic Properties of Basalt Fiber-Reinforced Composites with Nanoclay Particles

2019 ◽  
Vol 45 (2) ◽  
pp. 1017-1033 ◽  
Author(s):  
Mehmet Bulut ◽  
Ömer Yavuz Bozkurt ◽  
Ahmet Erkliğ ◽  
Hakan Yaykaşlı ◽  
Özkan Özbek
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Przemyslaw Lopato ◽  
Grzegorz Psuj ◽  
Barbara Szymanik

The inspection of thin basalt fiber reinforced composite materials was carried out using two nondestructive methods: terahertz time domain imaging and infrared thermography. In order to combine the information about the defects arising in examined materials the inspection results were parametrized. In order to acquire more information content, new approximation based features are proposed. Then, a knowledge extraction based multivariate analysis of preselected features’ vector was carried out. Finally, in order to integrate features distributions of representing different dynamic level of information, a multiresolution wavelet based data fusion algorithm was applied. The results are presented and discussed.


2021 ◽  
Vol 8 (12) ◽  
pp. 125302
Author(s):  
N Prasanaa Iyer ◽  
N Arunkumar

Abstract The main aim of this work is to study thedamage tolerance of hybrid basalt and carbon fiber-reinforced composite subjected to low velocity impact (LVI) at different velocities, 2.89 m s−1 and 4.42 m s−1, simulated using a CEAST drop hammer testing machine and Dynamic Mechanical Analysis(DMA) were conducted to characterize the sample. In this article, the detailed failure mechanism of seven composite laminates (Basalt fiber/Bismaleimide(BMI)-diallyl Bisphenol A(DABA), Carbon fiber/BMI-DABA, Carbon and basalt fiber(hybrid fibers)/BMI-DABA) were studied under loading of LVI. Through the experiment, it was also substantiated that the hybrid fiber-reinforced composites possessed better damage tolerance and thermo mechanical properties than the homogenous fiber-reinforced composites. The hybrid fiber composites that were produced vary in the number of carbon fiber to basalt fiber ratio and stacking sequence. The impacted surface was analyzed at macro level by using Image J software. The impact force, the energy absorbed, and the deformation of the laminates under impact load were scrutinized extensively, and it was inferred that the basalt fiber intercalated with carbon fiber with BMI/DABA possessed the highest damage resistance than the other composite laminates under study. The highest peak force 5702 N and 9241 N with the highest elastic energy 4.8 J, 11.7 J and with lower deformation (3.85 mm, 6.09 mm) and deformation area (22.79 mm2, 28.09 mm2) was observed in the intercalated hybrid laminate.


2018 ◽  
Vol 1148 ◽  
pp. 37-42
Author(s):  
Vemu Vara Prasad ◽  
Tanna Eswara Rao

Now a day’s eco-friendly natural fiber used as the reinforcement for the fabrication of the light weight, lower cost and biodegradable polymer matrix composites. One of such available natural reinforcement for the composite material is basalt fiber. The present paper gives a review on how the basalt fiber reinforced polymer matrix composite behave when they are adhesively, riveted and hybrid joined with other reinforcements such as aluminum, which is used for the particular or other applications and which joint gives better efficiency , suited for given application were discussed and the three joining techniques were investigated. Behavior of basalt fiber reinforced composites for the frequencies at which frequencies the failures like adhesive failure, light fiber tear, and mixed failure modes will occur. These three types of failure modes are investigated with the help of acoustic emission monitoring system.


2016 ◽  
Vol 08 (05) ◽  
pp. 1650068 ◽  
Author(s):  
Hajer Daoud ◽  
Jean-Luc Rebière ◽  
Amine Makni ◽  
Mohamed Taktak ◽  
Abderrahim El Mahi ◽  
...  

In this paper, the damping properties of flax fiber reinforced composites were investigated. Throughout a series of resonance vibration tests, the natural frequencies and the modal damping were evaluated. A numerical modelling was also produced by using a finite element model to determine the energies dissipated in each layer of the laminate structure in order to calculate the damping factors. The results obtained for the dynamic properties of flax fiber reinforced composites from experimental data and numerical analysis method show close agreement. The effect of fiber orientations on the damping behavior for this material was investigated. Another part of our work was to insert a thin viscoelastic layer within the flax fiber laminate. The interposition of this viscoelastic layer had a significant influence on the vibration behavior, bending stiffness and damping factors.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540004
Author(s):  
Yun-Hae Kim ◽  
Jin-Woo Lee ◽  
Kyung-Man Moon ◽  
Sung-Won Yoon ◽  
Tae-Sil Baek ◽  
...  

Composites are vulnerable to the impact damage by the collision as to the thickness direction, because composites are being manufactured by laminating the fiber. The understanding about the retained strength after the impact damage of the material is essential in order to secure the reliability of the structure design using the composites. In this paper, we have tried to evaluate the motion of the material according to the kinetic energy and potential energy and the retained strength after impact damage by testing the free fall test of the basalt fiber reinforced composite in the limelight as the environment friendly characteristic.


Sign in / Sign up

Export Citation Format

Share Document