Application of Machine Learning to Predict the Failure Parameters from Conventional Well Logs

Author(s):  
Moaz Hiba ◽  
Ahmed Farid Ibrahim ◽  
Salaheldin Elkatatny ◽  
Abdulwahab Ali
Keyword(s):  
2021 ◽  
Author(s):  
Tao Lin ◽  
Mokhles Mezghani ◽  
Chicheng Xu ◽  
Weichang Li

Abstract Reservoir characterization requires accurate prediction of multiple petrophysical properties such as bulk density (or acoustic impedance), porosity, and permeability. However, it remains a big challenge in heterogeneous reservoirs due to significant diagenetic impacts including dissolution, dolomitization, cementation, and fracturing. Most well logs lack the resolution to obtain rock properties in detail in a heterogenous formation. Therefore, it is pertinent to integrate core images into the prediction workflow. This study presents a new approach to solve the problem of obtaining the high-resolution multiple petrophysical properties, by combining machine learning (ML) algorithms and computer vision (CV) techniques. The methodology can be used to automate the process of core data analysis with a minimum number of plugs, thus reducing human effort and cost and improving accuracy. The workflow consists of conditioning and extracting features from core images, correlating well logs and core analysis with those features to build ML models, and applying the models on new cores for petrophysical properties predictions. The core images are preprocessed and analyzed using color models and texture recognition, to extract image characteristics and core textures. The image features are then aggregated into a profile in depth, resampled and aligned with well logs and core analysis. The ML regression models, including classification and regression trees (CART) and deep neural network (DNN), are trained and validated from the filtered training samples of relevant features and target petrophysical properties. The models are then tested on a blind test dataset to evaluate the prediction performance, to predict target petrophysical properties of grain density, porosity and permeability. The profile of histograms of each target property are computed to analyze the data distribution. The feature vectors are extracted from CV analysis of core images and gamma ray logs. The importance of each feature is generated by CART model to individual target, which may be used to reduce model complexity of future model building. The model performances are evaluated and compared on each target. We achieved reasonably good correlation and accuracy on the models, for example, porosity R2=49.7% and RMSE=2.4 p.u., and logarithmic permeability R2=57.8% and RMSE=0.53. The field case demonstrates that inclusion of core image attributes can improve petrophysical regression in heterogenous reservoirs. It can be extended to a multi-well setting to generate vertical distribution of petrophysical properties which can be integrated into reservoir modeling and characterization. Machine leaning algorithms can help automate the workflow and be flexible to be adjusted to take various inputs for prediction.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Osama Siddig ◽  
Ahmed Farid Ibrahim ◽  
Salaheldin Elkatatny

Unconventional resources have recently gained a lot of attention, and as a consequence, there has been an increase in research interest in predicting total organic carbon (TOC) as a crucial quality indicator. TOC is commonly measured experimentally; however, due to sampling restrictions, obtaining continuous data on TOC is difficult. Therefore, different empirical correlations for TOC have been presented. However, there are concerns about the generalization and accuracy of these correlations. In this paper, different machine learning (ML) techniques were utilized to develop models that predict TOC from well logs, including formation resistivity (FR), spontaneous potential (SP), sonic transit time (Δt), bulk density (RHOB), neutron porosity (CNP), gamma ray (GR), and spectrum logs of thorium (Th), uranium (Ur), and potassium (K). Over 1250 data points from the Devonian Duvernay shale were utilized to create and validate the model. These datasets were obtained from three wells; the first was used to train the models, while the data sets from the other two wells were utilized to test and validate them. Support vector machine (SVM), random forest (RF), and decision tree (DT) were the ML approaches tested, and their predictions were contrasted with three empirical correlations. Various AI methods’ parameters were tested to assure the best possible accuracy in terms of correlation coefficient (R) and average absolute percentage error (AAPE) between the actual and predicted TOC. The three ML methods yielded good matches; however, the RF-based model has the best performance. The RF model was able to predict the TOC for the different datasets with R values range between 0.93 and 0.99 and AAPE values less than 14%. In terms of average error, the ML-based models outperformed the other three empirical correlations. This study shows the capability and robustness of ML models to predict the total organic carbon from readily available logging data without the need for core analysis or additional well interventions.


2021 ◽  
Author(s):  
Yuki Maehara ◽  
◽  
Takeaki Otani ◽  
Tetsuya Yamamoto ◽  
◽  
...  

Lithological facies classification using well logs is essential in the reservoir characterization. The facies are manually classified from characteristic log responses derived, which is challenging and time consuming for geologically complex reservoirs due to high variation of log responses for each facies. To overcome such a challenge, machine learning (ML) is helpful to determine characteristic log responses. In this study, we classified the lithofacies by applying ML to the conventional well logs for the volcanic formation, onshore, northeast Japan. The volcanic formation of the Yurihara oil field is petrologically classified into five lithofacies: mudstone, hyaloclastite, pillow lava, sheet lava, and dolerite, with pillow lava being predominant reservoir. The former four lithofacies are the members of the volcanic system in Miocene, and dolerite randomly intruded later into those. Understanding the distribution of omnidirectional tight dykes at the well location is important for the estimation of potential near-lateral seal distribution compartmentalizing the reservoir. The facies are best classified by core data, which are unfortunately available in a limited number of wells. The conventional logs, with the help of the borehole image log, have been used for the facies classification in most of the wells. However, distinguishing dolerite from sheet lava by manual classification is very ambiguous, as they appear similar in these logs. Therefore, automated clustering of well logs with ML was attempted for the facies classification. All the available log data was audited in the target well prior to applying ML. A total of 10 well logs are available in the reservoir depth interval. To prioritize the logs for the clustering, the information of each log was first analyzed by Principal Component Analysis (PCA). The dimension of variable space was reduced from 10 to 5 using PCA. Final set of 5 variables, gamma-ray, density, formation photoelectric factor, neutron porosity, and laterolog resistivity, were used for the next clustering process. ML was applied to the selected 5 logs for automated clustering. Cross-Entropy Clustering (CEC) was first initialized using k-means++ algorithm. Multiple initialization processes were randomly conducted to find the global minimum of cost function, which automatically derived the optimized number of classes. The resulting classes were further refined by the Gaussian Mixture Model (GMM) and subsequently by the Hidden Markov Model (HMM), which takes the serial dependency of the classes between successive depths into account. Resulting 14 classes were manually merged into 5 classes referring to the lithofacies defined by the borehole image log analysis. The difference of the log responses between basaltic sheet lava and dolerite was too subtle to be captured with confidence by the conventional manual workflow, while the ML technique could successfully capture it. The result was verified by the petrological analyses on sidewall cores (SWCs) and cuttings. In this study, the automated clustering with the combination of several ML algorithms was demonstrated more efficient and reasonable facies classification. The unsupervised learning approach would provide supportive information to reveal the regional facies distribution when it is applied in the other wells, and to comprehend the dynamic behavior of the fluids in the reservoir.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 518
Author(s):  
Reza Rezaee

A nuclear magnetic resonance (NMR) logging tool can provide important rock and fluid properties that are necessary for a reliable reservoir evaluation. Pore size distribution based on T2 relaxation time and resulting permeability are among those parameters that cannot be provided by conventional logging tools. For wells drilled before the 1990s and for many recent wells there is no NMR data available due to the tool availability and the logging cost, respectively. This study used a large database of combinable magnetic resonance (CMR) to assess the performance of several well-known machine learning (ML) methods to generate some of the NMR tool’s outputs for clastic rocks using typical well-logs as inputs. NMR tool’s outputs, such as clay bound water (CBW), irreducible pore fluid (known as bulk volume irreducible, BVI), producible fluid (known as the free fluid index, FFI), logarithmic mean of T2 relaxation time (T2LM), irreducible water saturation (Swirr), and permeability from Coates and SDR models were generated in this study. The well logs were collected from 14 wells of Western Australia (WA) within 3 offshore basins. About 80% of the data points were used for training and validation purposes and 20% of the whole data was kept as a blind set with no involvement in the training process to check the validity of the ML methods. The comparison of results shows that the Adaptive Boosting, known as AdaBoost model, has given the most impressive performance to predict CBW, FFI, permeability, T2LM, and SWirr for the blind set with R2 more than 0.9. The accuracy of the ML model for the blind dataset suggests that the approach can be used to generate NMR tool outputs with high accuracy.


2019 ◽  
Vol 67 (6) ◽  
pp. 1991-2003 ◽  
Author(s):  
Edyta Puskarczyk

Abstract Unconventional oil and gas reservoirs from the lower Palaeozoic basin at the western slope of the East European Craton were taken into account in this study. The aim was to supply and improve standard well logs interpretation based on machine learning methods, especially ANNs. ANNs were used on standard well logging data, e.g. P-wave velocity, density, resistivity, neutron porosity, radioactivity and photoelectric factor. During the calculations, information about lithology or stratigraphy was not taken into account. We apply different methods of classification: cluster analysis, support vector machine and artificial neural network—Kohonen algorithm. We compare the results and analyse obtained electrofacies. Machine learning method–support vector machine SVM was used for classification. For the same data set, SVM algorithm application results were compared to the results of the Kohonen algorithm. The results were very similar. We obtained very good agreement of results. Kohonen algorithm (ANN) was used for pattern recognition and identification of electrofacies. Kohonen algorithm was also used for geological interpretation of well logs data. As a result of Kohonen algorithm application, groups corresponding to the gas-bearing intervals were found. Analysis showed diversification between gas-bearing formations and surrounding beds. It is also shown that internal diversification in gas-saturated beds is present. It is concluded that ANN appeared to be a useful and quick tool for preliminary classification of members and gas-saturated identification.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2778-2800 ◽  
Author(s):  
Harpreet Singh ◽  
Yongkoo Seol ◽  
Evgeniy M. Myshakin

Summary The application of specialized machine learning (ML) in petroleum engineering and geoscience is increasingly gaining attention in the development of rapid and efficient methods as a substitute to existing methods. Existing ML-based studies that use well logs contain two inherent limitations. The first limitation is that they start with one predefined combination of well logs that by default assumes that the chosen combination of well logs is poised to give the best outcome in terms of prediction, although the variation in accuracy obtained through different combinations of well logs can be substantial. The second limitation is that most studies apply unsupervised learning (UL) for classification problems, but it underperforms by a substantial margin compared with nearly all the supervised learning (SL) algorithms. In this context, this study investigates a variety of UL and SL ML algorithms applied on multiple well-log combinations (WLCs) to automate the traditional workflow of well-log processing and classification, including an optimization step to achieve the best output. The workflow begins by processing the measured well logs, which includes developing different combinations of measured well logs and their physics-motivated augmentations, followed by removal of potential outliers from the input WLCs. Reservoir lithology with four different rock types is investigated using eight UL and seven SL algorithms in two different case studies. The results from the two case studies are used to identify the optimal set of well logs and the ML algorithm that gives the best matching reservoir lithology to its ground truth. The workflow is demonstrated using two wells from two different reservoirs on Alaska North Slope to distinguish four different rock types along the well (brine-dominated sand, hydrate-dominated sand, shale, and others/mixed compositions). The results show that the automated workflow investigated in this study can discover the ground truth for the lithology with up to 80% accuracy with UL and up to 90% accuracy with SL, using six routine well logs [vp, vs, ρb, ϕneut, Rt, gamma ray (GR)], which is a significant improvement compared with the accuracy reported in the current state of the art, which is less than 70%.


Sign in / Sign up

Export Citation Format

Share Document