Rapid thermal annealing effects on the electrical, structural and morphological properties of Yb/p-type InP Schottky Structure

2015 ◽  
Vol 11 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Rajagopal Reddy ◽  
D. Sri Silpa ◽  
V. Janardhanam ◽  
Hyung-Joong Yun ◽  
Chel-Jong Choi
1996 ◽  
Vol 35 (Part 1, No. 8) ◽  
pp. 4220-4224 ◽  
Author(s):  
M. D. Kim ◽  
T. W. Kang ◽  
M. S. Han ◽  
T. W. Kim

2002 ◽  
Vol 92 (7) ◽  
pp. 4129-4131 ◽  
Author(s):  
H. Y. Huang ◽  
J. Q. Xiao ◽  
C. S. Ku ◽  
H. M. Chung ◽  
W. K. Chen ◽  
...  

1999 ◽  
Vol 568 ◽  
Author(s):  
Aditya Agarwal ◽  
Hans-J. Gossmann ◽  
Anthony T. Fiory

ABSTRACTOver the last couple of years rapid thermal annealing (RTA) equipment suppliers have been aggressively developing lamp-based furnaces capable of achieving ramp-up rates on the order of hundreds of degrees per second. One of the driving forces for adopting such a strategy was the experimental demonstration of 30nm p-type junctions by employing a ramp-up rate of ≈400°C/s. It was subsequently proposed that the ultra-fast temperature ramp-up was suppressing transient enhanced diffusion (TED) of boron which results from the interaction of the implantation damage with the dopant. The capability to achieve very high temperature ramp-rates was thus embraced as an essential requirement of the next generation of RTA equipment.In this paper, recent experimental data examining the effect of the ramp-up rate during spike-and soak-anneals on enhanced diffusion and shallow junction formation is reviewed. The advantage of increasing the ramp-up rate is found to be largest for the shallowest, 0.5-keV, B implants. At such ultra-low energies (ULE) the advantage arises from a reduction of the total thermal budget. Simulations reveal that a point of diminishing return is quickly reached when increasing the ramp-up rate since the ramp-down rate is in practice limited. At energies where TED dominates, a high ramp-up rate is only effective in minimizing diffusion if the implanted dose is sufficiently small so that the TED can be run out during the ramp-up portion of the anneal; for larger doses, a high ramp-up rate only serves to postpone the TED to the ramp-down duration of the anneal. However, even when TED is minimized at higher implant energies via high ramp-up rates, the advantage is unobservable due to the rather large as-implanted depth. It appears then that while spike anneals allow the activation of ULE-implanted dopants to be maximized while minimizing their diffusion the limitation imposed by the ramp-down rate compromises the advantage of very aggressive ramp-up rates.


1994 ◽  
Author(s):  
De-Dui Liao ◽  
Yih-Shung Lin ◽  
Hong Yang ◽  
Howard Witham ◽  
Javier Saenz ◽  
...  

2020 ◽  
Vol 706 ◽  
pp. 138094 ◽  
Author(s):  
Athorn Vora–ud ◽  
Somporn Thaowonkaew ◽  
Jessada Khajonrit ◽  
Kunchit Singsoog ◽  
Pennapa Muthitamongkol ◽  
...  

1991 ◽  
Vol 70 (4) ◽  
pp. 2366-2369 ◽  
Author(s):  
Jong‐Sung Hong ◽  
Yong Tae Kim ◽  
Suk‐Ki Min ◽  
Tae Won Kang ◽  
Chi Yhou Hong

Sign in / Sign up

Export Citation Format

Share Document