Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

2016 ◽  
Vol 12 (6) ◽  
pp. 747-752 ◽  
Author(s):  
Ali Mirzaei ◽  
Heon Ham ◽  
Han Gil Na ◽  
Yong Jung Kwon ◽  
Sung Yong Kang ◽  
...  
2005 ◽  
Vol 20 (10) ◽  
pp. 2609-2612 ◽  
Author(s):  
Go Yamamoto ◽  
Yoshinori Sato ◽  
Toru Takahashi ◽  
Mamoru Omori ◽  
Toshiyuki Hashida ◽  
...  

Single-walled carbon nanotubes (SWCNTs) were successfully solidified without any additives by hot-pressing and spark plasma sintering (SPS). The elastic modulus and fracture strength of the SWCNT solid prepared by the SPS method were about three and two times higher than that of the hot-pressed SWCNT solid prepared under the same processing condition. The enhancement of the mechanical properties of the SPS specimen may be due to the formation of comparatively stronger bond between SWCNTs, which is possibly brought about by the spark plasma generated in the SPS process.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1150
Author(s):  
Nicolás A. Ulloa-Castillo ◽  
Roberto Hernández-Maya ◽  
Jorge Islas-Urbano ◽  
Oscar Martínez-Romero ◽  
Emmanuel Segura-Cárdenas ◽  
...  

This article focuses on exploring how the electrical conductivity and densification properties of metallic samples made from aluminum (Al) powders reinforced with 0.5 wt % concentration of multi-walled carbon nanotubes (MWCNTs) and consolidated through spark plasma sintering (SPS) process are affected by the carbon nanotubes dispersion and the Al particles morphology. Experimental characterization tests performed by scanning electron microscopy (SEM) and by energy dispersive spectroscopy (EDS) show that the MWCNTs were uniformly ball-milled and dispersed in the Al surface particles, and undesirable phases were not observed in X-ray diffraction measurements. Furthermore, high densification parts and an improvement of about 40% in the electrical conductivity values were confirmed via experimental tests performed on the produced sintered samples. These results elucidate that modifying the powder morphology using the ball-milling technique to bond carbon nanotubes into the Al surface particles aids the ability to obtain highly dense parts with increasing electrical conductivity properties.


2009 ◽  
Vol 66 ◽  
pp. 41-44 ◽  
Author(s):  
Fan Zhang ◽  
Zheng Yi Fu ◽  
Jin Yong Zhang ◽  
Hao Wang ◽  
Wei Min Wang ◽  
...  

Here we have prepared B4C/CNTs composites using the spark-plasma sintering (SPS) method. Mechanical property measurements reveal obvious enhancement confirming the fabrication of true B4C/CNTs composite materials with improved toughness properties.The addition of 1wt% CNTs in the B4C increased the fracture toughness by about 1.6 times from 2.5 to 4 MPa.m1/2 because the CNTs presented at the B4C grain boundaries, made the length of cracks shorten.


2004 ◽  
Vol 821 ◽  
Author(s):  
Kyung Tae Kim ◽  
Kyong Ho Lee ◽  
Seung Il Cha ◽  
Chan-Bin Mo ◽  
Soon Hyung Hong

AbstractCarbon nanotubes (CNTs) have attracted remarkable attention as reinforcement for composites owing to their outstanding properties1-3. CNT/Cu nanocomposites were fabricated by mixing the nano-sized Cu powders with multi-wall carbon nanotubes and followed by the spark plasma sintering process. The CNT/Cu nanocomposite fabricated from nano-sized Cu powders shows more homogeneous distribution of CNTs in matrix compared to that fabricated from macro-sized Cu powders. The hardness of CNT/Cu nanocomposite fabricated from nano-sized Cu powders increases with increasing the volume fraction of CNTs, while the hardness of that fabricated from macro-sized Cu powders decreases with the addition of CNTs.


Sign in / Sign up

Export Citation Format

Share Document