Thermochemical conversion of Parthenium hysterophorus biomass for bio-oil synthesis: kinetics and techno-economic analysis

Author(s):  
Nagarajan Ramesh ◽  
Murugavelh Somasundaram
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6048
Author(s):  
Sulaiman Al Yahya ◽  
Tahir Iqbal ◽  
Muhammad Mubashar Omar ◽  
Munir Ahmad

Date palm trees, being an important source of nutrition, are grown at a large scale in Saudi Arabia. The biomass waste of date palm, discarded of in a non-environmentally-friendly manner at present, can be used for biofuel generation through the fast pyrolysis technique. This technique is considered viable for thermochemical conversion of solid biomass into biofuels in terms of the initial investment, production cost, and operational cost, as well as power consumption and thermal application cost. In this study, a techno-economic analysis has been performed to assess the feasibility of converting date palm waste into bio-oil, char, and burnable gases by defining the optimum reactor design and thermal profile. Previous studies concluded that at an optimum temperature of 525 °C, the maximum bio-oil, char and gases obtained from pyrolysis of date palm waste contributed 38.8, 37.2 and 24% of the used feed stock material (on weight basis), respectively, while fluidized bed reactor exhibited high suitability for fast pyrolysis. Based on the pyrolysis product percentage, the economic analysis estimated the net saving of USD 556.8 per ton of the date palm waste processed in the pyrolysis unit. It was further estimated that Saudi Arabia could earn USD 44.77 million per annum, approximately, if 50% of the total date palm waste were processed through fast pyrolysis, with a payback time of 2.57 years. Besides that, this intervention will reduce 2029 tons of greenhouse gas emissions annually, contributing towards a lower carbon footprint.


2015 ◽  
Vol 29 (12) ◽  
pp. 7993-7997 ◽  
Author(s):  
Martin R. Haverly ◽  
Lysle E. Whitmer ◽  
Robert C. Brown

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Muhammad Usman Hanif ◽  
Mohammed Zwawi ◽  
Sergio C. Capareda ◽  
Hamid Iqbal ◽  
Mohammed Algarni ◽  
...  

Pyrolysis of anaerobically digested sludge can serve as an efficient biomass for biofuel production. Pyrolysis produces products like char, bio-oil, and combustible gases by thermochemical conversion process. It can be used for sludge treatment that decreases sludge disposal problems. Sludge produced from anaerobic co-digestion (microalgae, cow dung, and paper) waste has high carbon and hydrogen content. We investigated the candidacy of the anaerobic sludge having high heating value (HHV) of 20.53 MJ/kg as a reliable biomass for biofuels production. The process of pyrolysis was optimized with different temperatures (400, 500, and 600 °C) to produce high quantity and improved quality of the products, mainly bio-oil, char, and gas. The results revealed that with the increase in pyrolysis temperature the quantity of char decreased (81% to 55%), bio-oil increased (3% to 7%), and gas increased (2% to 5%). The HHV of char (19.2 MJ/kg), bio-oil (28.1 MJ/kg), and gas (18.1 MJ/kg) were predominantly affected by the amount of fixed carbon, hydrocarbons, and volatile substance, respectively. The study confirmed that the anaerobic sludge is a promising biomass for biofuel production and pyrolysis is an efficient method for its safe disposal.


2013 ◽  
Vol 49 (4) ◽  
pp. 287-292 ◽  
Author(s):  
Kittiphop Promdee ◽  
Tharapong Vitidsant

2021 ◽  
Author(s):  
Ogene Fortunate ◽  
Nanda Kishore

Abstract The bio-oil obtained by thermochemical conversion of lignocellulosic biomass consist of large fractions of oxygenated compounds which deteriorate its quality leading to low calorific value, high viscosity, high density, high moisture content, etc. Therefore, the bio-oil should be deoxygenated using hydrogen in the presence of appropriate catalyst to improve its properties. Adequate literature on pyrolysis of biomass within the framework of computational fluid dynamics is available but only a couple of papers available on hydrodeoxygenation of bio-oil obtained by pyrolysis. Thus, in this study, guaiacol has been selected as a representative model compound of phenolic fraction of bio-oil for upgrading it by catalytic hydrodeoxygenation. The reaction process has been implemented in a fluidised bed reactor in the presence of palladium catalyst, Pd/Al 2 O 3 using computational fluid dynamics (CFD) based solver, ANSYS Fluent 14.5. The range of conditions considered herein are: weight-hourly space velocity (WHSV) = 1, 3 and 5 h -1 ; superficial H 2 -gas velocity, u = 0.075, 0.15 and 0.25 m/s; catalyst load = 0.06 kg and temperature, T = 548 K, 573 K, and 598 K. The solver has been thoroughly validated in terms of grid dependence study, time step size dependence study validating hydrodynamics and HDO results wherever possible with existing literature results. The HDO of guaiacol produces phenol as the most abundant compound along with significant amount of cyclopentanone and methanol. The formation of cyclopentanone from HDO of guaiacol is favourable at high temperature whereas low temperature conditions favour formation of methanol and phenol.


Sign in / Sign up

Export Citation Format

Share Document