scholarly journals An extensive parameter study of hydrotropic extraction of steam-pretreated birch

Author(s):  
Johanna Olsson ◽  
Michael Persson ◽  
Mats Galbe ◽  
Ola Wallberg ◽  
Ann-Sofi Jönsson

AbstractEfficient fractionation of lignocellulosic biomass is an important step toward the replacement of fossil-based products. However, the utilisation of all of the components in biomass requires various fractionation techniques. One promising process configuration is to apply steam explosion for the recovery of hemicelluloses and a subsequent hydrotropic extraction step for the delignification of the remaining solids. In this work, the influence of residence time, temperature and biomass loading on lignin recovery from birch using sodium xylene sulphonate as a hydrotrope was investigated. Our results show that residence time, temperature and biomass loading correlate positively with lignin extraction, but the effects of these parameters were limited. Furthermore, when steam explosion was implemented as the initial step, hydrotropic extraction could be performed even at room temperature, yielding a lignin extraction of 50%. Also, hydrothermal degradation of the material was necessary for efficient delignification with sodium xylene sulphonate, regardless of whether it occurs during steam explosion pretreatment or is achieved at high temperatures during the hydrotropic extraction.

2021 ◽  
Author(s):  
Denghui Tong ◽  
Peng Zhan ◽  
Weifeng Zhang ◽  
Yongcai Zhou ◽  
Yilei Huang ◽  
...  

Abstract Pretreatment is an indispensable process in lignocellulosic bioethanol production. In this work, a surfactant agent JFC was introduced into the dilute phosphoric acid plus steam explosion pretreatment scheme for fermentable sugar production using poplar as substrate. Four crucial factors (phosphoric acid concentration, surfactant concentration, pressure, and residence time) affecting the pretreatment efficiency were optimized using the single factor tests. The optimal parameters obtained were as follows: 1:2.5 solid/liquid rate, 2 h pre-soaking time, 1.5 %(v/v) JFC-M + 2.0 wt% phosphoric acid, 2.0 MPa pressure, and 120 s residence time, resulting in a maximum cellulose recovery rate of 86.33 % and enzymatic saccharification rate of 84.62 %, which was 38.97 % higher than that of control. The morphological and structural characteristics of samples before and after pretreatment, were characterized by the scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) method. The addition of JFC-M was of a notable influence in overcoming biomass recalcitrance and boosting cellulose digestion, showing great application potentials in biomass conversion process.


Author(s):  
Yogita P. Labrath ◽  
Prafulla V. Belge ◽  
Uma G. Kulkarni ◽  
Vilas G. Gaikar

Abstract The turmeric rhizome (Curcuma longa) contains curcuminoids embedded in the starch matrix. It is thus important to target starch hydrolysis to enhance extraction of curcuminoids. In the case of starch hydrolysis, α-amylase is more efficient when the starch is in a gelatinised form than when it is in its natural form. The present work includes hydrolysis of turmeric starch in its natural and gelatinised forms using α-amylase in hydrotrope solution (HS) and scCO2. The optimum rate of starch hydrolysis was obtained using 200 IU cm−3 of α-amylase, at reaction conditions of 6.5 pH at 328 K when 10% w/w of turmeric powder was stirred at 900 rpm in HSs. The hydrolysis in 15 MPa scCO2 at room temperature required a phase modifier and 40 min of residence time (RT). The enzyme treatment of turmeric powder in HSs increased the filtration rate for curcuminoid extraction (gelatinised and native) compared to untreated turmeric powder.


2021 ◽  
Vol 11 (1) ◽  
pp. 454
Author(s):  
Adil Mazar ◽  
Naceur Jemaa ◽  
Waleed Wafa Al Dajani ◽  
Mariya Marinova ◽  
Michel Perrier

A pre-hydrolysate is an aqueous stream obtained during the production of hardwood kraft dissolving pulp. It is rich in sugars and contains dissolved organic matters. The purpose of this study is to investigate the optimization of lignin recovery from wood pre-hydrolysates and to characterize the extracted lignin. The optimal conditions for lignin extraction have been determined to be (a) a filtration temperature of 40 °C, (b) a sulfuric acid concentration of 8.5 kg·m−3, and (c) a coagulation time of 180 min. Using these conditions, high filtration rates have been obtained and the extracted lignin has a low content of impurities (8.3%), a low molecular weight (1270 Da), and a very low polydispersity (Mw/Mn = 1.22). Compared to kraft lignin, the pre-hydrolysate lignin has a much lower molecular weight and could be a potential candidate for niche applications. A high lignin recovery rate is possible (52% of the total lignin content in the pre-hydrolysate).


Author(s):  
Pak Sui Lam ◽  
Pak Yiu Lam ◽  
Shahab Sokhansanj ◽  
Xiaotao T. Bi ◽  
C. Jim Lim ◽  
...  

Steam explosion is a thermo-chemical pretreatment widely used to disrupt the ultra-structure of the cell wall of the ligno-cellulosic fiber to improve the fractionation of the major ligno-cellulosic components of the biomass for biochemical conversion. In recent years, steam explosion pretreatment has been applied on the fibers for improving the pellet quality of woody and agricultural biomass for thermo-chemical conversion. The improved qualities include high bulk density, low equilibrium moisture content, higher heating value, mechanical strength and moisture resistance. All of these desirable properties allow the steam exploded pellets to be handled and stored outdoors safely, similar to coal. This also raises lots of interests in considering pellets as preferable feedstock for the thermal power plant or bio-refinery facilities. In this chapter, the state of art of research findings on the effect of steam explosion on size reduction and pellet quality of woody and agriculture biomass will be discussed.


2020 ◽  
Vol 148 ◽  
pp. 112279 ◽  
Author(s):  
C. Padilla-Rascón ◽  
E. Ruiz ◽  
I. Romero ◽  
E. Castro ◽  
J.M. Oliva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document