Studies on thermal, structural, and compositional properties of agro-waste jute fiber composite reinforced with cardanol resin

Author(s):  
N. Stalin ◽  
N. Shobhanadevi
2013 ◽  
Vol 20 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Pandian Amuthakkannan ◽  
Vairavan Manikandan ◽  
Jebbas Thangaiah Winowlin Jappes ◽  
Marimuthu Uthayakumar

AbstractMechanical properties of fiber reinforcement that can be obtained by the introduction of basalt fibers in jute fiber-reinforced polyester composites have been analyzed experimentally. Basalt/jute fiber-reinforced hybrid polymer composites were fabricated with a varying fiber percentage by using compression molding techniques. The fabricated composite plates were subjected to mechanical testing to estimate tensile strength, flexural strength and impact strength of the composites. The effect of fiber content on basalt/jute fiber in the composites has been studied. Addition of jute fiber into basalt fiber composite makes it a cost-effective one. Incorporation of basalt fiber into the composites was at approximately 10%, 20%, up to 90%, and the jute fiber percentage was reduced from 90%, 80%, to 10% correspondingly. Mechanical properties were investigated as per ASTM standards. Tensile and flexural strengths were tested by using a computer-assisted universal testing machine, and impact strength by using an Izod impact tester. It has been observed that the addition of jute fiber to the basalt fiber polyester composites enhanced the mechanical properties. Water absorption of hybrid composites was also analyzed and was found to be proportional to fiber percentage.


2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


This paper investigates the chemical treated fiber reinforcement effect on the chemical resistance behavior of natural fiber reinforced polyester composite. A composite material was developed with jute fiber reinforcement in the polyester matrix. Jute fiber is reinforced in three different forms namely untreated, NaOH treated and Silane treated jute fibers. The chemical resistance property of the composite was investigated as per the ASTM standard. Six different chemicals were used to investigate the chemical resistance behavior of the composite. The chemical resistance property was increased with addition of treated jute fiber. All the tested composites exhibited positive results on the chemical resistance test.


2012 ◽  
Vol 7 (4) ◽  
pp. 155892501200700 ◽  
Author(s):  
Saravanan Kannappan ◽  
Bhaarathi Dhurai

The effect of temperature, pressure, and time on the tensile strength of jute fiber composite has been studied. The process of preparing the composite specimens is discussed. The best tensile properties were observed if the composite board is manufactured using high pressure and moderate temperature. For tensile strength, the time does not play a significant role. The study identifies the principal experimental pressure variables, which have the greatest effect on the tensile strength of the composite. The composite boards were subjected to tensile tests and the fractured surfaces were observed under SEM. The SEM photomicrographs of the fractured surfaces of the composite board show diverse extents of fiber pull-outs under tensile failure. The tensile strength values are in good concurrence with predicted values and were found have a correlation coefficient of 96%.


2014 ◽  
Vol 592-594 ◽  
pp. 339-343 ◽  
Author(s):  
S. Sathish ◽  
T. Ganapathy ◽  
Thiyagarajan Bhoopathy

In recent trend, the most used fiber reinforced composite is the glass fiber composite. The glass-fiber composites have high strength and mechanical properties but it is costlier than sisal and jute fiber. Though the availability of the sisal and jute fiber is more, it cannot be used for high strength applications. A high strength-low cost fiber may serve the purpose. This project focuses on the experimental testing of hybrid composite materials. The hybrid composite materials are manufactured using three different fibers - sisal, glass and jute with epoxy resin with weight ratio of fiber to resin as 30:70. Four combinations of composite materials viz., sisal-epoxy, jute-epoxy, sisal-glass-epoxy and sisal-jute-epoxy are manufactured to the ASTM (American Society for Testing and Materials) standards. The specimens are tested for their mechanical properties such as tensile and impact strength in Universal Testing machine. The results are compared with that of the individual properties of the glass fiber, sisal fiber, jute fiber composite and improvements in the strength-weight ratio and mechanical properties are studied.


Sign in / Sign up

Export Citation Format

Share Document