scholarly journals Investigating and Optimizing the Process Variables Related to the Tensile Properties of Short Jute Fiber Reinforced with Polypropylene Composite Board

2012 ◽  
Vol 7 (4) ◽  
pp. 155892501200700 ◽  
Author(s):  
Saravanan Kannappan ◽  
Bhaarathi Dhurai

The effect of temperature, pressure, and time on the tensile strength of jute fiber composite has been studied. The process of preparing the composite specimens is discussed. The best tensile properties were observed if the composite board is manufactured using high pressure and moderate temperature. For tensile strength, the time does not play a significant role. The study identifies the principal experimental pressure variables, which have the greatest effect on the tensile strength of the composite. The composite boards were subjected to tensile tests and the fractured surfaces were observed under SEM. The SEM photomicrographs of the fractured surfaces of the composite board show diverse extents of fiber pull-outs under tensile failure. The tensile strength values are in good concurrence with predicted values and were found have a correlation coefficient of 96%.

2012 ◽  
Vol 5 (1) ◽  
pp. 43-54 ◽  
Author(s):  
R. M. Hossain ◽  
A. Islam ◽  
A. W. Van Vuure ◽  
V. Ignaas

Jute, the pride of Bangladesh, has gained interest in the composite field due to its superior specific properties compared to artificial manmade fibers like glass, kevlar, etc. In this study, jute composites made with the vacuum assisted resin infiltration (VARI) techniques were investigated. Jute fiber preform stacking sequences were (0/0/0/0), 0/+45°/-45°/0 and 0/90°/90°/0. For all cases, a total of 25% volume fraction of jute fiber was incorporated. The developed composites were characterized by tensile tests and the experimental results thus obtained were compared with that of the theoretical values. After tensile tests, fracture surfaces were cut and observed under high resolution FEG SEM.  In the case of 0/0/0/0 and 0/+45°/-45°/0 lamina composites, longitudinal tensile strength has been found to be higher than that of the transverse direction. However, for 0/90°/90°/0 lamina composites, tensile strengths in both directions were very close to each other. For all developed composites, experimental results revealed that the tensile properties of the developed composites strongly depend on the tensile strength of jute fiber and that the tensile properties of jute fiber are very much defect-sensitive. Finally, a discussion of the tensile behaviors of the composites is initiated in terms of the fracture morphologies observed under the SEM.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i1.10519        J. Sci. Res. 5 (1), 43-54 (2013) 


2011 ◽  
Vol 66-68 ◽  
pp. 1207-1212 ◽  
Author(s):  
Mohd Sayuti ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
M.K.A.M. Arifin ◽  
T.R. Vijayaram ◽  
...  

Vibrational moulding process has a remarkable effect on the properties of castings during solidification processing of metals, alloys, and composites. This research paper discusses on the investigation of mechanical vibration mould effects on the tensile properties of titanium carbide particulate reinforced LM6 aluminium alloy composites processed with the frequencies of 10.2 Hz, 12 Hz and 14 Hz. In this experimental work, titanium carbide particulate reinforced LM6 composites were fabricated by carbon dioxide sand moulding process. The quantities of titanium carbide particulate added as reinforcement in the LM6 alloy matrix were varied from 0.2% to 2% by weight fraction. Samples taken from the castings and tensile tests were conducted to determine the tensile strength and modulus of elasticity. The results showed that tensile strength of the composites increased with an increase in the frequency of vibration and increasing titanium carbide particulate reinforcement in the LM6 alloy matrix.


2010 ◽  
Vol 452-453 ◽  
pp. 261-264 ◽  
Author(s):  
Kenichi Takemura

In this study, molding condition and tensile properties of jute fiber reinforced composite were examined. PVA resin was used as matrix which is one of the biodegradable resin. Before tensile test, specimens have an offset twist. The tensile test after twist of jute fiber cloth was also conducted. As a result, following results were obtained. In the case of jute fiber cloth, the effect of twist deformation to tensile strength is not great. The reason is thought that the fiber cloth is flexible and easy to deform in this form. In the case of composite, molding time has an effect to the tensile properties. As the molding temperature increases, the tensile strength increases. So, the diffraction intensity was measured. The reason of effect to the strength is thought that the crystallization occurred in the matrix. When the molding temperature is so high, fiber has degradation, and the strength of the composite decreases. As the degree of twist increases, the strength decreases. The reasons are the delamination between layers and debonding between fiber and matrix.


2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


2013 ◽  
Vol 209 ◽  
pp. 6-9 ◽  
Author(s):  
Rajendra Doiphode ◽  
S.V.S. Narayana Murty ◽  
Nityanand Prabhu ◽  
Bhagwati Prasad Kashyap

Mg-3Al-1Zn (AZ31) alloy was caliber rolled at 250, 300, 350, 400 and 450 °C. The effects of caliber rolling temperature on the microstructure and tensile properties were investigated. The room temperature tensile tests were carried out to failure at a strain rate of 1 x 10-4s-1. The nature of stress-strain curves obtained was found to vary with the temperature employed in caliber rolling. The yield strength and tensile strength followed a sinusoidal behaviour with increasing caliber rolling temperature but no such trend was noted in ductility. These variations in tensile properties were explained by the varying grain sizes obtained as a function of caliber rolling temperature.


2011 ◽  
Vol 239-242 ◽  
pp. 141-144
Author(s):  
Jia Horng Lin ◽  
Jin Mao Chen ◽  
Ching Wen Lin ◽  
Wen Hao Hsing ◽  
Yu Chia Hsu ◽  
...  

In this study, carbon fibers (CF) were braided with polypropylene (PP) fibers on a 16-spindle braid machine, forming the PP/ CF composite braids. The composite braids with different levels of strength could be obtained by changing the speed of the yarn turntable and volume gauze. The composite braids with optimum tensile strength then received the thermal treatment, which melted the PP fibers to wrap the CF more tightly, stabilizing the structure of the composite braids. According to CNS 11623 (Tensile Properties of Geogrids by the Single), the composite braids were thermal-treated at 170 °C, 180 °C and 190 °C for1 min, 2 min and 3 min, determing the influence of thermal temperature and duration on the tensile strength of PP/ CF composite braids.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1995 ◽  
Author(s):  
Yongxin Yang ◽  
Yanju Jiang ◽  
Hongjun Liang ◽  
Xiaosan Yin ◽  
Yue Huang

Elevated temperature exposure has a negative effect on the performance of the matrix resin in Carbon Fiber Reinforced Plastics (CFRP) plates, whereas limited quantitative research focuses on the deteriorations. Therefore, 30 CFRP specimens were designed and tested under elevated temperatures (10, 30, 50, 70, and 90 °C) to explore the degradations in tensile properties. The effect of temperature on the failure mode, stress-strain curve, tensile strength, elastic modulus and elongation of CFRP plates were investigated. The results showed that elevated temperature exposure significantly changed the failure characteristics. When the exposed temperature increased from 10 °C to 90 °C, the failure mode changed from the global factures in the whole CFRP plate to the successive fractures in carbon fibers. Moreover, with temperatures increasing, tensile strength and elongation of CFRP plates decreases gradually while the elastic modulus shows negligible change. Finally, the results of One-Way Analysis of Variance (ANOVA) show that the degradation of the tensile strength of CFRP plates was due to the impact of elevated temperature exposure, rather than the test error.


2010 ◽  
Vol 168-170 ◽  
pp. 963-968
Author(s):  
Chuan Zhi Zhou ◽  
Qi Lin Zhang ◽  
Ying Ying Zhang

Uniaxial tensile tests of PVC membrane are carried out at seven kinds of temperature. The change law of tensile strength, strain at break and the Young’s modulus at different temperature are obtained from the tests. The results indicate with the increase of the test temperature, the tensile strength decreases while the tensile strain at break increase, but the load-deformation curve trends are similar. By using molecular break theory, the fitting formulas are proposed to predict the effect of temperature on tensile strength. In addition, the cycle loading tests were carried out in three different phases. This paper studies the residual strain and the elasticity change of the PVC membrane during the test. The results indicate PVC membrane is typical elasto-plasticity material. With the increase of cycle loading the residual strain increases.


2011 ◽  
Vol 299-300 ◽  
pp. 460-465 ◽  
Author(s):  
Li Zhang ◽  
Xiu Ping Dong ◽  
Hao Chen

By designing different formulations of composites and adopting optimized technology including extrusion and molding, the different composites with various content microcapsules were prepared. The results of the tensile tests show that with the increasing content of self-healing microcapsules in the glass fiber reinforced nylon composites, the mechanical properties of the composites will change, i.e. tensile strength, elastic modulus will decrease. But there is little effect on the mechanical properties of the composite gears if the content of self-healing microcapsules is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1401 ◽  
Author(s):  
Bazli ◽  
Ashrafi ◽  
Jafari ◽  
Zhao ◽  
Raman ◽  
...  

The present study indicates the importance of using glass fiber reinforced polymer (GFRP) laminates with appropriate thickness and fibers orientation when exposed to harsh environmental conditions. The effect of different environmental conditions on tensile properties of different GFRP laminates is investigated. Laminates were exposed to three environmental conditions: (1) Freeze/thaw cycles without the presence of moisture, (2) freeze/thaw cycles with the presence of moisture and (3) UV radiation and water vapor condensation cycles. The effect of fiber configuration and laminate thickness were investigated by considering three types of fiber arrangement: (1) Continuous unidirectional, (2) continuous woven and (3) chopped strand mat and two thicknesses (2 and 5 mm). Microstructure and tensile properties of the laminates after exposure to different periods of conditioning (0, 750, 1250 and 2000 h) were studied using SEM and tensile tests. Statistical analyses were used to quantify the obtained results and propose prediction models. The results showed that the condition comprising UV radiation and moisture condition was the most aggressive, while dry freeze/thaw environment was the least. Furthermore, the laminates with chopped strand mat and continuous unidirectional fibers respectively experienced the highest and the lowest reductions properties in all environmental conditions. The maximum reductions in tensile strength for chopped strand mat laminates were about 7%, 32%, and 42% in the dry freeze/thaw, wet freeze/thaw and UV with moisture environments, respectively. The corresponding decreases in the tensile strength for unidirectional laminates were negligible, 17% and 23%, whereas those for the woven laminates were and 7%, 24%, and 34%.


Sign in / Sign up

Export Citation Format

Share Document