Sustainable acid catalyst from the hydrothermal carbonization of carrageenan: use in glycerol conversion to solketal

Author(s):  
Claudio J. A. Mota ◽  
Jennifer R. Dodson ◽  
Bianca P. Pinto ◽  
Daniella R. Fernandes
2019 ◽  
Vol 7 (1) ◽  
pp. 55-80 ◽  
Author(s):  
Fatemeh Ghorbani ◽  
Seied Ali Pourmousavi ◽  
Hamzeh Kiyani

Background: Much attention has been focused on heterogeneous catalysts. Reactions with these recoverable and reusable catalysts are clean, selective with high efficiency. Among the heterogeneous solid acid catalyst in organic synthesis, Carbon-Based Solid Acids (CBSAs), which are important solid acid with many practical and research applications have been extensively studied. In this work, green Pistachio peel, a biomass waste, was converted into a novel carbon-based solid acid catalyst (Pis-SO3H). Objective: The aim of this work is to synthesize highly sulfonated carbon as an efficient, recyclable, nontoxic solid acid catalyst by simultaneous sulfonation, dehydration and carbonization of green Pistachio peel as biomass and investigate the catalytic activity of Pis-SO3H in acetalization, thioacetalization, acylation of aldehydes and synthesis of 3,3'-Arylmethylene-bis(4-hydroxycoumarin) derivatives. Method: Pis-SO3H was synthesized by an integrated fast one-step hydrothermal carbonization and sulfonation process in the presence of sulfuric acid. The characterization of the physicochemical properties of Pis-SO3H was achieved by XRD, FT-IR, FE-SEM, and elemental analysis. Results: The result of acid-base titration showed that the total acidity of the catalyst was 7.75 mmol H+g−1. This new heterogeneous catalyst has been efficiently used for the chemoselective thioacetalization, acetalization and acylation of aldehyde and the synthesis of biscoumarins under solvent-free conditions. All the reactions work easily in high yields. The antimicrobial activity of some of the biscoumarins was evaluated in screening by disk diffusion assay for the zone of inhibition. Conclusion: The catalytic activity of the Pis-SO3H was investigated during acetalization, thioacetalization, acylation and synthesis of biscoumarins. The results of protection of carbonyl groups and synthesis of biscoumarins in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste.


2015 ◽  
Vol 31 (5) ◽  
Author(s):  
Pei San Kong ◽  
Mohamed Kheireddine Aroua ◽  
Wan Mohd Ashri Wan Daud

AbstractThe inevitably low value of bioglycerol has led to extensive investigations on glycerol conversion to value-added chemicals. This review focuses on the industrially important catalytic esterification of glycerol with oleic acid attributable to its high commercial value. Conventionally, the catalytic esterification of long-chain fatty acids with glycerol is operated at extreme operating conditions (homogeneous acid catalyst, high temperature, and intensive vacuum system). Because of these, rational design of reliable solid acid catalysts for water-sensitive esterification process is needed in order to enhance existing process condition. Up until now, the recent development of efficient and environmentally benign catalysts for esterification of glycerol with oleic acid has not been captured in any review. Therefore, the current literatures of catalytic esterification of glycerol with oleic acid and their affecting parameters are primarily discussed in this review. This review has shown that the hydrophobicity surface of catalysts is vital to boost up the reaction activity of polar glycerol and immiscible phase behavior of reactants. In addition, the concluding remarks for catalyst selectivity of glycerol monooleate, dioleate, and trioleate synthesis are presented. The paper also highlights the research gaps and future direction of this important research field.


2018 ◽  
Vol 55 (1B) ◽  
pp. 145
Author(s):  
T-Que Phuong Phan

In this study, a carbon–based solid acid catalyst was prepared via hydrothermal carbonization method (HTC) using glucose and pyrolysed waste tyre as carbon precursors and aqueous solution of H2SO4 as sulfonation agent. Prepared catalysts were characterized by X–ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared FT–IR and Brunauer–Emmett–Teller (BET). As the result, catalysts were manufactured with the appropriate physical and chemical characteristics and high acidity.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 148 ◽  
Author(s):  
Maria Testa ◽  
Valeria La Parola ◽  
Farah Mesrar ◽  
Fatiha Ouanji ◽  
Mohamed Kacimi ◽  
...  

In the present work, zirconium phosphates and mixed zirconium phosphate–sulphate acid catalysts have been investigated in the acetylation of glycerol in order to obtain acetins as fuel additives. The following catalysts with chemical composition, Zr3(PO4)4, Zr(SO4)2, Zr2(PO4)2SO4, Zr3(PO4)2(SO4)3 and Zr4(PO4)2(SO4)5 have been prepared and characterized by acid capacity measurements, BET, XRD, FT-IR, XPS. The surface chemical composition in terms of P/Zr and S/Zr atomic ratios was monitored in the fresh and used catalysts. Zr3(PO4)2(SO4)3 and Zr4(PO4)2(SO4)5 showed the highest acidity associated with the synergic effect of two main crystalline phases, Zr2(PO4)2SO4 and Zr(SO4)2·4H2O. The reactions of glycerol acetylation were carried out by using a mass ratio of catalyst/glycerol equal to 5 wt% and molar ratio acetic acid/glycerol equal to 3:1. The glycerol conversion versus time was investigated over all the prepared samples in order to identify the best performing catalysts. Over Zr3(PO4)2(SO4)3 and Zr4(PO4)2(SO4)5 full glycerol conversion was achieved in 1 h only. Slightly lower conversion values were registered for Zr3(PO4)4 and Zr2(PO4)2SO4, while Zr(SO4)2 was the worst catalyst. Zr4(PO4)2(SO4)5 was the most selective catalyst and was used for recycling experiments up to five cycles. Despite a modest loss of activity, a drastic decrease of selectivity to tri- and diacetin was observed already after the first cycle. This finding was attributed to the leaching of sulphate groups as detected by XPS analysis of the spent catalyst.


Author(s):  
Jidon Adrian Janaun ◽  
Tan Jaik Mey ◽  
Awang Bono ◽  
Duduku Krishnaiah

<p>A novel structured carbon-based acid catalyst was prepared by depositing the carbon precursor onto glass, ceramic and aluminum supports via dip-coating method, followed by carbonization process for converting the d-glucose layer into black carbon char in an inert nitrogen environment at 400 °C. Then, the –SO<sub>3</sub>H group was introduced into the framework of the carbon char by multiple vapor phase sulfonation. Four different carbonization methods were carried out (dry pyrolysis and hydrothermal carbonization with or without pressurized) in the catalyst preparation while among the carbonization methods, the samples which prepared from dry pyrolysis without pressurized process showed the strong acidity due to highest adsorption of acid group in the catalyst surface although the catalyst attached onto the support was the least compared to other preparation methods. Among the catalysts, the sulfonated carbon-base catalyst that is attached on the ceramic support exhibited the highest aci-dity (1.327 mmol/g) followed by the catalyst deposited on the glass (0.917 mmol/g) and aluminum (0.321 mmol/g) supports. The porous structure of ceramic surface, allowed a better interaction between reactants and –SO<sub>3</sub>H site in the carbon. Through the FT-IR analysis, it was observed that the functional groups –COOH, –OH, and –SO<sub>3</sub>H were present in the active sites of the catalysts. The surface areas of  glass (Si–SC), ceramic (Ce–SC) and aluminum (Al–SC) catalysts were larger than 1 m<sup>2</sup>/g, whereas the pore size belongs to macroporous as the average pore size is more than 50 nm. It is also stable within the temperature of 400 °C as there was less than 10% weight loss revealed from the TGA analysis. Copyright © 2017 BCREC GROUP. All rights reserved</p><p><em>Received: 20<sup>th</sup> April 2016; Revised: 14<sup>th</sup> October 2016; Accepted: 17<sup>th</sup> October 2016</em></p><p><strong>How to Cite:</strong> Janaun, J.A., Mey, T.J., Bono, A., Krishnaiah, D. (2017). Preparation and Characterization of Sugar Based Catalyst on Various Supports.<em> Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 12 (1): 41-48 (doi:10.9767/bcrec.12.1.478.41-48)</p><p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.12.1.478.41-48</p><p> </p>


Author(s):  
Kouider Alali ◽  
Fouad Lebsir ◽  
Sondes Amri ◽  
Ali Rahmouni ◽  
Ezzedine Srasra ◽  
...  

The production of solketal and conversion of glycerol takes a major importance in the field of the sustainability of the biodiesel industry. The synthesis of (2,2-dimethyl-1,3-dioxolan-4-yl)methanol by the acetalization of glycerol with acetone successfully applied out using various Algerian acid activated clays (maghnia-H+) under autogenous pressure and without solvent. The acid catalyst clays are prepared by an easy technique by activation with the available and low-cost Maghnia clay. The purified Maghnia clay named ALC and the resulting series of acid-activated clays AL1, AL2, AL3, and AL4 are characterized by X-ray Fluorescence (XRF) investigation, N2-adorption/desorption Brunauer–Emmett–Teller  (BET) surface area, X-rays Diffraction (XRD), Fourier Transform Infra Red (FT-IR) spectroscopy, SEM microscopy and the cation exchange capacity (CEC) with copper bisethylenediamine complex method, in order to study the effect of activation at the acid and the catalytic behaviour in the acetalization reaction. The results show a high catalytic activity whose that the yield of solketal production interest reached 95 % at a temperature of 40 °C for a reaction time of 48 hours with full selectivity and glycerol conversion reaching up to 89 %. A mechanistic is proposed to explain the chemoselective of solketal production. These results indicate the potential of this Algerian acid activated clays catalysts for the acetalization of glycerol for an environmentally benign process. Copyright © 2018 BCREC Group. All rights reservedReceived: 28th March 2018; Revised: 17th October 2018; Accepted: 30th October 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Alali, K., Lebsir, F., Amri, S., Rahmouni, A., Srasra, E., Besbes, N. (2019). Algerian Acid Activated Clays as Efficient Catalysts for a Green Synthesis of Solketal by Chemoselective Acetalization of Glycerol with Acetone. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 130-141 (doi:10.9767/bcrec.14.1.2445.130-141)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2445.130-141 


Sign in / Sign up

Export Citation Format

Share Document