A new route for developing highly efficient nano biochemical sensors for detecting ultra-low concentrations of tetracycline antibiotic residue in water

Gold Bulletin ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Alwan M. Alwan ◽  
Layla A. Wali ◽  
Khulood K. Hasan
Author(s):  
Lanxin Li ◽  
Wu-Ji Sun ◽  
Haoyu Zhang ◽  
Jialiang Wei ◽  
Shuxian Wang ◽  
...  

The efficient electroreduction reaction of nitrate (NO3-RR) at low concentrations to ammonia is energetically favorable for ammonia production and environmentally essential to treat water contamination. Copper-based conjugated molecule electrocatalysts for...


2019 ◽  
Vol 41 (21) ◽  
pp. 2705-2715 ◽  
Author(s):  
Wenjin Xu ◽  
Chao Xu ◽  
Jun Deng ◽  
Guomeng Zhang ◽  
Guangxu Zhang

Author(s):  
Roya Mazrouei ◽  
Bryan Kier ◽  
Mohammad Shavezipur

Abstract Three-dimensional biochemical sensors are developed that can be used for chemical and biological detection in aqueous solutions and suspensions. The sensors are fabricated using a standard polycrystalline silicon process, PolyMUMPs, and can detect chemicals and biomarkers in low concentrations in near real time. The sensors made of a stack of electrodes allowing the solution to occupy the space between the layers of electrodes and have a larger interface with the electrodes. The sensors use electrochemistry impedance spectroscopy (EIS) for detection and therefore increasing the solution-electrode interface improves the sensitivity of the sensor. To demonstrate the applicability of the proposed sensor design, experimental measurements are used to characterize and compare the 3D sensors with conventional 2D interdigitated sensors. Diethylhexyl phthalate (DEHP) solution is used as the target chemical, and the 2D and 3D biochemical sensors are exposed to different concentrations of DEHP solution. An LCR meter is used to sweep the frequency and determine the impedance of the sensor-solution combination. The test results show that the three-dimensional sensors have higher sensitivity than 2D interdigitated ones verifying the advantage of the new sensor design over existing conventional sensors. The proposed sensors can also be used for detection of biological markers such as cells, proteins and enzymes in aqueous solutions.


Adsorption ◽  
2005 ◽  
Vol 10 (4) ◽  
pp. 309-315 ◽  
Author(s):  
Pinar Akka? Kavakli ◽  
Noriaki Seko ◽  
Masao Tamada ◽  
Olgun G�ven

Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Uwe Lücken ◽  
Michael Felsmann ◽  
Wim M. Busing ◽  
Frank de Jong

A new microscope for the study of life science specimen has been developed. Special attention has been given to the problems of unstained samples, cryo-specimens and x-ray analysis at low concentrations.A new objective lens with a Cs of 6.2 mm and a focal length of 5.9 mm for high-contrast imaging has been developed. The contrast of a TWIN lens (f = 2.8 mm, Cs = 2 mm) and the BioTWTN are compared at the level of mean and SD of slow scan CCD images. Figure 1a shows 500 +/- 150 and Fig. 1b only 500 +/- 40 counts/pixel. The contrast-forming mechanism for amplitude contrast is dependent on the wavelength, the objective aperture and the focal length. For similar image conditions (same voltage, same objective aperture) the BioTWIN shows more than double the contrast of the TWIN lens. For phasecontrast specimens (like thin frozen-hydrated films) the contrast at Scherzer focus is approximately proportional to the √ Cs.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


2020 ◽  
Vol 56 (27) ◽  
pp. 3851-3854 ◽  
Author(s):  
Xiaomin Chai ◽  
Hai-Hua Huang ◽  
Huiping Liu ◽  
Zhuofeng Ke ◽  
Wen-Wen Yong ◽  
...  

A Co-based complex displayed the highest photocatalytic performance for CO2 to CO conversion in aqueous media.


Sign in / Sign up

Export Citation Format

Share Document