Interseeding alfalfa into corn silage increases corn N fertilizer demand and increases system yield

2021 ◽  
Vol 41 (4) ◽  
Author(s):  
William R. Osterholz ◽  
Matthew D. Ruark ◽  
Mark J. Renz ◽  
John H. Grabber
2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Simone Graeff ◽  
Judit Pfenning ◽  
Wilhelm Claupein ◽  
Hans-Peter Liebig

Numerous models have been developed for calculating optimum decision rules for nitrogen fertilization based on remote sensing techniques. New technologies related to digital image analysis may provide an alternative method to estimate nutrient status faster and more efficiently than current techniques. A series of field studies was conducted to determine the applicability of digital image analysis for nitrogen demand estimates in broccoli plants. Digital images were taken under constant light conditions in various wavelength ranges (380–1300 nm) using a digital imager. Images were processed for the parameters and in the color system. The image analysis showed a close correlation between the nitrogen status of broccoli plants and the parameter of the color system especially in the wavelength ranges and  nm. The relationship between nutrient concentration in leaf dry matter and the parameters was used to determine the N fertilizer demand within the cultivation period. Estimated N amounts were applied as top dressing four weeks after setting and were 100 kg lower than the standard fertilizer rate. Calculated N balances indicated a total uptake of applied N amounts in the image-based N treatments without considerable yield loss. Thus, digital image analysis proved to be an effective means of determining nitrogen status and adjusting fertilizer applications to preserve or enhance crop quality and yield considering sustainability.


2015 ◽  
Vol 2 (3) ◽  
pp. 26-31
Author(s):  
K. Węglarzy ◽  
Yu. Shliva ◽  
B. Matros ◽  
G. Sych

Aim. To optimize the methane digestion process while using different recipes of substrate components of ag- ricultural origin. Methods. The chemical composition of separate components of the substrate of agricultural by-products, industrial wastes, fats of the agrorefi nery and corn silage was studied. Dry (organic) mass, crude protein (fat) fi ber, loose ash, nitrogen-free exhaust were estimated in the components and the productivity of biogas was determined along with the methane content. These data were used as a basis for daily recipes of the substrate and the analysis of biogas production at the biogas station in Kostkowice. Results. The application of by-products of agricultural production solves the problem of their storage on boards and in open containers, which reduces investment costs, related to the installation of units for their storage. Conclusions. The return on investment for obtaining electric energy out of agricultural biogas depends considerably on the kind of the substrate used and on technological and market conditions.


2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


1972 ◽  
Vol 35 (2) ◽  
pp. 466-473
Author(s):  
R. L. Edwards ◽  
G. C. Skelley ◽  
J. J. Starnes ◽  
W. A. Balk

Author(s):  
Eva U. Cammayo ◽  
Nilo E. Padilla

This research aimed to improve dairy production and increase the income of dairy farmers using locally available feed resources. Small-scale milk producers rely heavily on available feed resources in the locality which are either indigenous in the area or introduced species for feed and nutrition of their dairy cattle and buffalos. Their milk output depends mainly on seasonal fluctuations in the quality and quantity of natural forage. Crop residues such as corn stover and rice straw which are high in fiber but low in nutrients serve as a feed supplement and filler to the daily diets of dairy cattle and buffalos. Cagayan Valley is an ear of top corn and rice-producing region. The potential of crop residues as feed supplements or raw materials of dairy cattle/buffalo feed mix is great. But dairy farmers still face the scarcity problem of quality feed resources for dairy animals especially during the dry season. The supply of forage is very low during the dry spell. Inadequate feed mix and low nutritive value of feed mix result in low or no milk production. Producing green corn and ensiling it to produce green corn silage preserves and prolong the storage life of forages. In this way, a stable supply of feed mix for dairy animals is assured year-round. Type of Paper: Empirical. Keywords: adoption and commercialization, dairy industry, financial viability, green-corn silage production, indigenous grasses, smallholder farmers.


2017 ◽  
Vol 1 (3) ◽  
pp. 367-381 ◽  
Author(s):  
D. B. Burken ◽  
B. L. Nuttelman ◽  
J. L. Gramkow ◽  
A. L. McGee ◽  
K. M. Sudbeck ◽  
...  

Abstract Corn plants were sampled over 2 consecutive years to assess the effects of corn hybrid maturity class, plant population, and harvest time on whole corn plant quality and yield in Nebraska. A finishing experiment evaluated the substitution of corn with corn silage in diets with corn modified distillers grains with solubles (MDGS). The first 2 harvest dates were at the mid- and late-silage harvest times whereas the final harvest was at the grain harvest stage of plant maturity. Whole plant yields increased as harvest time progressed (yr 1 quadratic P < 0.01; yr 2 linear P < 0.01). However, differences in TDN concentration in both years were quite minimal across harvest time, because grain percentage increased but residue NDF in-situ disappearance decreased as harvest time was delayed. In the finishing experiment, as corn silage inclusion increased from 15 to 55% (DM basis) by replacing dry rolled and high moisture corn grain with corn silage in diets containing 40% MDGS, DMI, ADG, and G:F linearly decreased (P ≤ 0.01), with the steers on the 15% corn silage treatment being 1.5%, 5.0%, and 7.7% more efficient than steers on treatments containing 30, 45, and 55% corn silage, respectively. Calculated dietary NEm and NEg decreased linearly as corn silage inclusion increased indicating that net energy values were greater for corn grain than for corn silage. In addition, dressing percentage decreased linearly (P < 0.01) as silage inclusion increased suggesting more fill as silage inclusion increases in diets. Cattle fed greater than 15% corn silage in finishing diets based on corn grain will gain slower and be slightly less efficient and likely require increased days to market at similar carcass fatness and size. When 30% silage was fed with 65% MDGS, DMI, and ADG were decreased (P < 0.01) compared to feeding 30% silage with 40% MDGS suggesting some benefit to including a proportion of corn in the diet. Conversely, when 45% silage was fed with 40% MDGS, ADG, and G:F were greater (P < 0.04) than when 45% silage was fed with just grain implying a greater energy value for MDGS than for corn grain. Substituting corn silage for corn grain in finishing diets decreased ADG and G:F which would increase days to finish to an equal carcass weight; however, in this experiment, increasing corn silage levels with MDGS present reduced carcass fat thickness without significantly decreasing marbling score.


1995 ◽  
Vol 25 (2) ◽  
pp. 208-214 ◽  
Author(s):  
J.S. Shumway ◽  
H.N. Chappell

The Diagnosis and Recommendation Integrated System (DRIS) has been used successfully in agricultural crops and holds promise for use in forest stands. This study used soil tests to develop DRIS norms and evaluate their effectiveness in coastal Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) forests. DRIS norms for nitrogen, phosphorus, potassium, and calcium were developed using soil test and site index data from 72 soil series that commonly support Douglas-fir in western Washington. The norms were tested using soil test and stand basal area growth response data from 20 thinned and 30 unthinned N fertilizer test sites in coastal Washington and Oregon. Response to urea fertilizer in thinned stands averaged 34% and 43% for 224 and 448 kg N•ha−1, respectively, when N was identified as the most limiting nutrient. When N was not the most limiting nutrient, N response averaged 8% and 10% for 224 and 448 kg N•ha−1, respectively. Results were similar in unthinned stands and thinned stands, although response to fertilizer appeared to be slightly less in unthinned stands when N was the most limiting nutrient. DRIS correctly classified 25 of the 33 sites (76%) where N fertilizer increased growth by more than 15%. More importantly, 13 of the 17 (76%) sites that responded by less than 15% were correctly identified by DRIS. The results clearly indicate that N fertilizer response is dependent on the interactions (balance) between soil nutrients at a given site. Future soil diagnostic work needs to focus on techniques, like DRIS, that provide an assessment of these interactions.


Sign in / Sign up

Export Citation Format

Share Document