scholarly journals Effect of species grouping and site variables on aboveground biomass models for lowland tropical forests of the Indo-Malay region

2017 ◽  
Vol 74 (1) ◽  
Author(s):  
Solichin Manuri ◽  
Cris Brack ◽  
Teddy Rusolono ◽  
Fatmi Noor’an ◽  
Louis Verchot ◽  
...  
Author(s):  
Nidhi Jha ◽  
Nitin Kumar Tripathi ◽  
Nicolas Barbier ◽  
Salvatore G. P. Virdis ◽  
Wirong Chanthorn ◽  
...  

1997 ◽  
Vol 13 (5) ◽  
pp. 697-708 ◽  
Author(s):  
M. Delaney ◽  
S. Brown ◽  
A. E. Lugo ◽  
A. Torres-Lezama ◽  
N. Bello Quintero

ABSTRACTOne of the major uncertainties concerning the role of tropical forests in the global carbon cycle is the lack of adequate data on the carbon content of all their components. The goal of this study was to contribute to filling this data gap by estimating the quantity of carbon in the biomass, soil and necromass for 23 long-term permanent forest plots in five life zones of Venezuela to determine how C was partitioned among these components across a range of environments. Aboveground biomass C ranged from 70 to 179 Mg ha−1 and soil C from 125 to 257 Mg ha−1, and they represented the two largest C components in all plots. The C in fine litter (2.4 to 5.2 Mg ha−1), dead wood (2.4 to 21.2 Mg ha−1) and roots (23.6 to 38.0 Mg ha−1) accounted for less than 13% of the total C. The total amount of C among life zones ranged from 302 to 488 Mg ha−1, and showed no clear trend with life zone. In three of the five life zones, more C was found in the dead (soil, litter, dead wood) than in the live (biomass) components (dead to live ratios of 1.3 to 2.3); the lowland moist and moist transition to dry life zones had dead to live ratios of less than one. Results from this research suggest that for most life zones, an amount equivalent to between 20 and 58% of the aboveground biomass is located in necromass and roots. These percentages coupled with reliable estimates of aboveground biomass from forest inventories enable a more complete estimation of the C content of tropical forests to be made.


Tropics ◽  
2018 ◽  
Vol 27 (2) ◽  
pp. 33-48
Author(s):  
Yoshiyuki Kiyono ◽  
Eriko Ito ◽  
Yukako Monda ◽  
Jumpei Toriyama ◽  
Thy Sum

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 316 ◽  
Author(s):  
Bao Huy ◽  
Giang Thanh ◽  
Krishna Poudel ◽  
Hailemariam Temesgen

Bamboo forests play an important role in achieving the objectives of the United Nations program on Reducing Emission from Deforestation and Forest Degradation. We developed and validated a modeling system that simultaneously estimate aboveground biomass and its components for a common bamboo species (Bambusa procera A. Chev. and A. Camus) in tropical forests. Eighty-three bamboo culms were destructively sampled from seventeen 100 m2 sample plots located in different parts of the Central Highlands in Viet Nam to obtain total plant aboveground biomass (AGB) and its components. We examined the performance of weighted nonlinear models fit by maximum likelihood and weighted nonlinear seemingly unrelated regression fit by generalized least squares for predicting bamboo biomass. The simultaneous estimation of AGB and its components produced higher reliability than the models of components and total developed separately. With a large number of bamboo species, it may not be feasible to develop species- specific biomass models, hence genus-specific allometric models may be considered.


1980 ◽  
Vol 10 (3) ◽  
pp. 367-370 ◽  
Author(s):  
T. R. Crow ◽  
P. R. Laidly

A number of untransformed regression models were compared to the log-log form of the allometric function for estimating biomass. Models were evaluated using two tree species, Betulapapyrifera Marsh, and Pinusresinosa Ait., and one tall shrub, Ilexverticillata (L.) Gray, with total aboveground biomass as the dependent variable. Using goodness of fit as the criterion, both weighted linear and weighted nonlinear models proved to be acceptable alternatives to the transformed allometric equation. Weighted models retain the advantage of the log-log form, i.e., compatibility with the homogeneity of variance assumption, but avoid the transformational bias.


2020 ◽  
Author(s):  
Milton Serpa de Meira-Junior ◽  
José Roberto Rodrigues Pinto ◽  
Natália Oliveira Ramos ◽  
Eder Pereira Miguel ◽  
Ricardo de Oliveira Gaspar ◽  
...  

Abstract Background Long-term studies of community and population dynamics indicate that abrupt disturbances often catalyse changes in vegetation and carbon stocks. These disturbances include the opening of clearings, flooding, rainfall seasonality, and drought, as well as fire and direct human disturbance. Such events may be super-imposed on longer-term trends in disturbance, such as those associated with climate change (heating, drying), as well as resources. Intact neotropical forests have recently experienced increased drought frequency and fire, on top of pervasive increases in atmospheric CO2 concentrations, but we lack long-term records of responses to such changes especially in the critical transitional areas at the interface of forest and savanna biomes. Here, we present results from 20 years monitoring a valley forest (moist tropical forest outlier) in central Brazil. The forest has experienced multiple drought events and includes plots which have and which have not experienced fire. We focus on how forest structure (stem density and aboveground biomass carbon) and dynamics (stem and biomass mortality and recruitment) have responded to these disturbance regimes. ResultsOverall, the biomass carbon stock increased due to the growth of the trees already present in the forest, without any increase in the overall number of tree stems. Over time, both recruitment and especially mortality of trees tended to increase, and periods of prolonged drought in particular resulted in increased mortality rates of larger trees. This increased mortality was in turn responsible for a decline in aboveground carbon toward the end of the monitoring period. Fire in 2010, which occurred in only some of our plots, tended to exacerbate the trends of increasing mortality and losses of biomass carbon. Conclusion Prolonged droughts influence the mortality of large trees, leading to a decline in aboveground carbon stocks. Here, and in other neotropical forests, recent droughts are capable of shutting down and reversing biomass carbon sinks. These new results add to evidence that anthropogenic climate changes are already adversely impacting tropical forests.


2015 ◽  
Vol 12 (9) ◽  
pp. 6821-6861 ◽  
Author(s):  
K. D. Heineman ◽  
S. E. Russo ◽  
I. C. Baillie ◽  
J. D. Mamit ◽  
P. P.-K. Chai ◽  
...  

Abstract. Fungal decay of heartwood creates hollows and areas of reduced wood density within the stems of living trees known as heart rot. Although heart rot is acknowledged as a source of error in forest aboveground biomass estimates, there are few datasets available to evaluate the environmental controls over heart rot infection and severity in tropical forests. Using legacy and recent data from drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of heart rot, and used generalized linear mixed effect models to characterize the association of heart rot with tree size, wood density, taxonomy, and edaphic conditions. Heart rot was detected in 55% of felled stems > 30 cm DBH, while the detection frequency was lower for stems of the same size evaluated by non-destructive drilling (45%) and coring (23%) methods. Heart rot severity, defined as the percent stem volume lost in infected stems, ranged widely from 0.1–82.8%. Tree taxonomy explained the greatest proportion of variance in heart rot frequency and severity among the fixed and random effects evaluated in our models. Heart rot frequency, but not severity, increased sharply with tree diameter, ranging from 56% infection across all datasets in stems > 50 cm DBH to 11% in trees 10–30 cm DBH. The frequency and severity of heart rot increased significantly in soils with low pH and cation concentrations in topsoil, and heart rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the percent of stem biomass lost to heart rot varied significantly with soil properties, and we estimate that 7% of the forest biomass is in some stage of heart rot decay. This study demonstrates not only that heart rot is a significant source of error in forest carbon estimates, but also that it strongly covaries with soil resources, underscoring the need to account for edaphic variation in estimating carbon storage in tropical forests.


2015 ◽  
Vol 12 (19) ◽  
pp. 5735-5751 ◽  
Author(s):  
K. D. Heineman ◽  
S. E. Russo ◽  
I. C. Baillie ◽  
J. D. Mamit ◽  
P. P.-K. Chai ◽  
...  

Abstract. Fungal decay of heart wood creates hollows and areas of reduced wood density within the stems of living trees known as stem rot. Although stem rot is acknowledged as a source of error in forest aboveground biomass (AGB) estimates, there are few data sets available to evaluate the controls over stem rot infection and severity in tropical forests. Using legacy and recent data from 3180 drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of stem rot in a total of 339 tree species, and related variation in stem rot with tree size, wood density, taxonomy, and species' soil association, as well as edaphic conditions. Predicted stem rot frequency for a 50 cm tree was 53 % of felled, 39 % of drilled, and 28 % of cored stems, demonstrating differences among methods in rot detection ability. The percent stem volume infected by rot, or stem rot severity, ranged widely among trees with stem rot infection (0.1–82.8 %) and averaged 9 % across all trees felled. Tree taxonomy explained the greatest proportion of variance in both stem rot frequency and severity among the predictors evaluated in our models. Stem rot frequency, but not severity, increased sharply with tree diameter, ranging from 13 % in trees 10–30 cm DBH to 54 % in stems ≥ 50 cm DBH across all data sets. The frequency of stem rot increased significantly in soils with low pH and cation concentrations in topsoil, and stem rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the maximum percent of stem biomass lost to stem rot varied significantly with soil properties, and we estimate that stem rot reduces total forest AGB estimates by up to 7 % relative to what would be predicted assuming all stems are composed strictly of intact wood. This study demonstrates not only that stem rot is likely to be a significant source of error in forest AGB estimation, but also that it strongly covaries with tree size, taxonomy, habitat association, and soil resources, underscoring the need to account for tree community composition and edaphic variation in estimating carbon storage in tropical forests.


Sign in / Sign up

Export Citation Format

Share Document