Protective effects of organic fractions of Trachyspermum copticum against advance glycation end products in vitro

2019 ◽  
Vol 20 (2) ◽  
pp. 143-151
Author(s):  
Fatemeh Golshahi ◽  
Seifollah Bahramikia
2014 ◽  
Vol 1 (e1) ◽  
pp. 001-001 ◽  
Author(s):  
Kei Fukami ◽  
Takanori Matsui ◽  
Sho-ichi Yamagishi

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 453
Author(s):  
Ana Filošević Vujnović ◽  
Katarina Jović ◽  
Emanuel Pištan ◽  
Rozi Andretić Waldowski

Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ayesha Khan ◽  
Ajmal Khan ◽  
Manzoor Ahmad ◽  
Mumtaz Ali ◽  
Umar Farooq ◽  
...  

Abstract Background Diabetes is a long-lasting and serious disease that effect in worldwide individual lives, families, and societies. Hyperglycemia of diabetes mellitus produced Advance Glycation End Products that are associated with diabetic complications like neuropathy, nephropathy, retinopathy, and cardiovascular diseases. Methods In this study, the natural products isolated from of Indigofera heterantha Brandis, Indigoferin A (S1), Indigoferin B (S2) and Indigoferin C (S3) were evaluated for their in vitro antiglycation activity. Results The compounds exhibited a significant inhibitory activity against the formation of Advanced Glycation End-Products with IC50 values of 674.25 ± 3.2 μM, 407.03 ± 4.7 μM and 726.41 ± 2.1 μM, respectively. Here, important structure-activity relationship was observed, when the intramolecular hydrogen bonding interactions suppressed the antiglycation activity of compound S3. Thus, the study clearly demonstrates that the number and the position of substituents act as an assisting factor and directly influence the inhibitory activity of the natural product by altering the sugar or protein binding affinity. Conclusions This study explain first time the antiglycation inhibitory ability of chemical constituents isolated from I. heterantha and can be used for above late diabetic complications.


Blood ◽  
2012 ◽  
Vol 119 (25) ◽  
pp. 6136-6144 ◽  
Author(s):  
Weifei Zhu ◽  
Wei Li ◽  
Roy L. Silverstein

Abstract Diabetes mellitus has been associated with platelet hyperreactivity, which plays a central role in the hyperglycemia-related prothrombotic phenotype. The mechanisms responsible for this phenomenon are not established. In the present study, we investigated the role of CD36, a class-B scavenger receptor, in this process. Using both in vitro and in vivo mouse models, we demonstrated direct and specific interactions of platelet CD36 with advanced glycation end products (AGEs) generated under hyperglycemic conditions. AGEs bound to platelet CD36 in a specific and dose-dependent manner, and binding was inhibited by the high-affinity CD36 ligand NO2LDL. Cd36-null platelets did not bind AGE. Using diet- and drug-induced mouse models of diabetes, we have shown that cd36-null mice had a delayed time to the formation of occlusive thrombi compared with wild-type (WT) in a FeCl3-induced carotid artery injury model. Cd36-null mice had a similar level of hyperglycemia and a similar level of plasma AGEs compared with WT mice under this condition, but WT mice had more AGEs incorporated into thrombi. Mechanistic studies revealed that CD36-dependent JNK2 activation is involved in this prothrombotic pathway. Therefore, the results of the present study couple vascular complications in diabetes mellitus with AGE-CD36–mediated platelet signaling and hyperreactivity.


Sign in / Sign up

Export Citation Format

Share Document