Fabrication of electrochemically nonporous NiO–ZnO/TiO2 nanotubes/Ti plates for photocatalytic disinfection of microbiological pollutants

2019 ◽  
Vol 16 (6) ◽  
pp. 1207-1215 ◽  
Author(s):  
Neda Mohaghegh ◽  
Masoud Faraji ◽  
Amir Abedini
Molecules ◽  
2017 ◽  
Vol 22 (5) ◽  
pp. 704 ◽  
Author(s):  
Cristina Pablos ◽  
Javier Marugán ◽  
Rafael van Grieken ◽  
Patrick Dunlop ◽  
Jeremy Hamilton ◽  
...  

2020 ◽  
Vol 27 (6) ◽  
pp. 854-902 ◽  
Author(s):  
Raluca Ion ◽  
Madalina Georgiana Necula ◽  
Anca Mazare ◽  
Valentina Mitran ◽  
Patricia Neacsu ◽  
...  

TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.


2021 ◽  
Vol 49 (1) ◽  
pp. 398-406
Author(s):  
Yanchang Liu ◽  
Zhicheng Tong ◽  
Chen Wang ◽  
Runzhi Xia ◽  
Huiwu Li ◽  
...  

Author(s):  
Yao Wang ◽  
Yuanxing Li ◽  
Xin Shi ◽  
Xiangbo Zheng ◽  
Zongtao Zhu ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 931
Author(s):  
Yin Xu ◽  
Giovanni Zangari

Electromagnetic light from the Sun is the largest source, and the cleanest energy available to us; extensive efforts have been dedicated to developing science and engineering solutions in order to avoid the use of fossil fuels. Solar energy transforms photons into electricity via the photovoltaic effect, generating about 20 GW of energy in the USA in 2020, sufficient to power about 17 million households. However, sunlight is erratic, and technologies to store electric energy storage are unwieldy and relatively expensive. A better solution to store energy and to deliver this energy on demand is storage in chemical bonds: synthesizing fuels such as H2, methane, ethanol, and other chemical species. In this review paper we focus on titania (TiO2) nanotubes grown through electrochemical anodization and various modifications made to them to enhance conversion efficiency; these semiconductors will be used to implement the synthesis of H2 through water splitting. This document reviews selected research efforts on TiO2 that are ongoing in our group in the context of the current efforts worldwide. In addition, this manuscript is enriched by discussing the latest novelties in this field.


2021 ◽  
pp. 002199832110237
Author(s):  
V Sivaprakash ◽  
R Narayanan

Fabrication of TiO2 nanotubes (NTs) has extensive application properties due to their high corrosion resistant and compatibility with biomedical applications, the synthesis of TiO2 nanotubes over titanium has drawn interest in various fields. The synthesis of TiO2 NTs using novel in-situ step-up voltage conditions in the electrochemical anodization process is recorded in this work. For manufacturing the NTs at 1 hour of anodization, the input potential of 30, 40 and 50 V was selected. With increasing step-up voltage during the anodization process, an improvement in the NTs was observed, favoring corrosion resistance properties. The surface of NTs enhances the structure of the ribs, raising the potential for feedback over time. XRD was used to analyze phase changes, and HR-SEM analyzed surface topography. Impedance tests found that longer NTs improved the corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document