scholarly journals Fixed-bed column study for the adsorptive removal of acid fuchsin using carbon–alumina composite pellet

Author(s):  
M. Dutta ◽  
J. K. Basu
2021 ◽  
Author(s):  
Hemant Singh ◽  
Sankalp Raj ◽  
Rishi karan singh rathour ◽  
Jayanta Bhattacharya

Abstract Bimetallic Metal organic framework (MOF) has garnered interest over the years with its application in various environmental remediation. In this study, Fe-Al-1,4-Benzene di-Carboxylic acid (FeAl(BDC)) MOF was synthesized, and adsorptive removal of Rhodamine B dye in batch and unique hybrid FeAl (BDC)-River sand fixed-bed column was achieved. The experimental data from the batch studies corroborated well with the Pseudo second-order (PSO) and Freundlich adsorption isotherm models. Furthermore, a fixed-bed column study was conducted to assess the effect of varying flow rate (2, 5, 8 mL/min), bed height (5, 9, 13 cm), and feed concentration (10, 20, 30 mg/L) on the adsorption performance of FeAl(BDC) in continuous mode of operation. A uniform mixture of river sand and FeAl(BDC) by weight ratio (9:1) was achieved prior to packing the column. The column study reveals that Sand-FeAl(BDC) can achieve the maximum adsorption capacity of 113.05 mg/g at a flow rate of 5 mL/min, feed concentration of 20 mg/L, and bed height of 13 cm. The experimental data of the column study were successfully fitted with BDST, Thomas, Yoon-Nelson, and Dose-response models. The fitting parameter values from the BDST model raise the scope of possible upscaling of the fixed-bed column. Hence, it is proposed that these River sand-FeAl(BDC)-based filters can be widely used in areas facing critical contamination and in poor communities with a high demand for water.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shazia Perveen ◽  
Raziya Nadeem ◽  
Shaukat Ali ◽  
Yasir Jamil

Abstract Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R 2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C t /C o  = 0.95) and breakthrough (C t /C o  = 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.


Author(s):  
N A Akbar ◽  
N D Rosman ◽  
S Hambali ◽  
A A Abu Bakar

2020 ◽  
Vol 19 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Tahere Taghizade Firozjaee ◽  
Naser Mehrdadi ◽  
Majid Baghdadi ◽  
Gholamreza Nabi Bidhendi

2021 ◽  
Vol 221 ◽  
pp. 139-151
Author(s):  
Omar S.A. Al-Khazrajy ◽  
Salam A. Mohammed ◽  
Omaimah Al-Musallami ◽  
Zahour Al-Rawahi ◽  
Emad Yousif

Author(s):  
Afif Hethnawi ◽  
Maysam Alnajjar ◽  
Abdallah D. Manasrah ◽  
Azfar Hassan ◽  
Gerardo Vitale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document