Relationship among physicochemical conditions, chlorophyll-a concentration, and water level in a tropical river–floodplain system

2018 ◽  
Vol 16 (7) ◽  
pp. 3869-3876
Author(s):  
A. K. Cruz-Ramírez ◽  
M. Á. Salcedo ◽  
A. J. Sánchez ◽  
E. Barba Macías ◽  
J. D. Mendoza Palacios
2011 ◽  
Vol 8 (2) ◽  
pp. 3739-3770 ◽  
Author(s):  
E. Alcântara ◽  
E. M. Novo ◽  
C. F. Barbosa ◽  
M.-P. Bonnet ◽  
J. Stech ◽  
...  

Abstract. Long-term environmental time series of continuously collected data are fundamental to identify and classify pulses and determine their role in aquatic systems. This paper presents in situ daily mean chlorophyll-a concentration time series, key information for the current understanding of carbon fluxes in and out of the Amazonian floodplain system. This paper also investigates how seasonal fluctuations in water level affect the relationship between chlorophyll-a concentration and some of its controlling limnological (water level, water surface temperature, pH and turbidity) and meteorological (wind intensity, relative humidity and short wave radiation) variables provided by an automatic monitoring system (Integrated System for Environmental Monitoring-SIMA) deployed at Curai Lake. The data are collected in preprogrammed time interval (1 h) and are transmitted by satellite in quasi-real time for any user in a range of 2500 km from the acquisition point. We used Pearson correlation to determine the quantitative relationship between chlorophyll-a time series and others environmental parameters. Fourier power spectrum analyses were applied to identify periods of high variability in chlorophyll-a time series and wavelet power spectrum analyses helped to characterize their time-frequency structure. To further investigate the relationship between chlorophyll-a and the statistically significant variable highlighted by Pearson's correlation, the set of time series was submitted to cross wavelet analysis. The time series of chlorophyll-a shows two high peaks (47 μg L−1 and 53.30 μg L−1) of concentration during a year: first during the rising water and second during the low water level. A small peak was observed during the high water level (10 μg L−1). For the most part of rising, high and receding water level, the chlorophyll-a concentration is often low (from 2.20 μg L−1 to 9.10 μg L−1). chlorophyll-a concentration displays periodicities ranging from 2–60 days, with a coherence of approximately 1 in phase with water level during the rising and low water period. Water level dynamics and turbidity explain 68% of the chlorophyll-a time series variability.


Hydrobiologia ◽  
2021 ◽  
Vol 848 (9) ◽  
pp. 2043-2053 ◽  
Author(s):  
Vanessa Ernandes de Amo ◽  
Jéssica Ernandes-Silva ◽  
Dieison André Moi ◽  
Roger Paulo Mormul

2021 ◽  
Vol 13 (10) ◽  
pp. 5703
Author(s):  
Jaehwan Seo ◽  
Bon Joo Koo

Though biological and ecological characteristics of Scopimera globosa have been intensively investigated, little has been understood on bioturbation, especially sediment reworking. This study was designed to evaluate variation on sediment reworking of S. globosa based on feeding pellet production (FP) and burrowing pellet production (BP) with influencing factors and estimating the chlorophyll content reduction within the surface sediment by its feeding. The FP and BP largely fluctuated according to chlorophyll a concentration and crab density, but both were not influenced by temperature. The FP was enhanced by chlorophyll a concentration, whereas both FP and BP were restricted by crab density. The daily individual production was highest in spring, followed by fall and summer, with values of 25.61, 20.70 and 3.90 g ind.−1 d−1, respectively, while the total daily production was highest in fall, followed by summer and spring 2150, 1660 and 660 g m−2 d−1, respectively. The daily sediment reworking based on the FP and BP of Scopimera was highest in fall, followed by summer and spring, with values of 1.91, 1.70 and 0.77 mm d-1 and the annual sediment reworking rate of this species was calculated 40 cm year−1 based on its density in this study area. The chlorophyll a reduction ratio was estimated from 11 to 24% in one day by its feeding. These results imply that the sediment reworking of S. globosa is regulated by food abundance and its density, and Scopimera is an important bioturbator, greatly influencing biogeochemical changes in the intertidal sediments.


Author(s):  
Yuequn Lai ◽  
Jing Zhang ◽  
Yongyu Song ◽  
Zhaoning Gong

Remote sensing retrieval is an important technology for studying water eutrophication. In this study, Guanting Reservoir with the main water supply function of Beijing was selected as the research object. Based on the measured data in 2016, 2017, and 2019, and Landsat-8 remote sensing images, the concentration and distribution of chlorophyll-a in the Guanting Reservoir were inversed. We analyzed the changes in chlorophyll-a concentration of the reservoir in Beijing and the reasons and effects. Although the concentration of chlorophyll-a in the Guanting Reservoir decreased gradually, it may still increase. The amount and stability of water storage, chlorophyll-a concentration of the supply water, and nitrogen and phosphorus concentration change are important factors affecting the chlorophyll-a concentration of the reservoir. We also found a strong correlation between the pixel values of adjacent reservoirs in the same image, so the chlorophyll-a estimation model can be applied to each other.


Sign in / Sign up

Export Citation Format

Share Document