Cellulase production by Sinorhizobium meliloti strain 224 using waste tobacco as substrate

2019 ◽  
Vol 16 (10) ◽  
pp. 5881-5890 ◽  
Author(s):  
A. V. Buntić ◽  
M. D. Milić ◽  
O. S. Stajković-Srbinović ◽  
N. V. Rasulić ◽  
D. I. Delić ◽  
...  
2001 ◽  
Vol 98 (17) ◽  
pp. 9877-9882 ◽  
Author(s):  
D. Capela ◽  
F. Barloy-Hubler ◽  
J. Gouzy ◽  
G. Bothe ◽  
F. Ampe ◽  
...  

2006 ◽  
Vol 188 (20) ◽  
pp. 7195-7204 ◽  
Author(s):  
Lise Barra ◽  
Catherine Fontenelle ◽  
Gwennola Ermel ◽  
Annie Trautwetter ◽  
Graham C. Walker ◽  
...  

ABSTRACT Methionine is produced by methylation of homocysteine. Sinorhizobium meliloti 102F34 possesses only one methionine synthase, which catalyzes the transfer of a methyl group from methyl tetrahydrofolate to homocysteine. This vitamin B12-dependent enzyme is encoded by the metH gene. Glycine betaine can also serve as an alternative methyl donor for homocysteine. This reaction is catalyzed by betaine-homocysteine methyl transferase (BHMT), an enzyme that has been characterized in humans and rats. An S. meliloti gene whose product is related to the human BHMT enzyme has been identified and named bmt. This enzyme is closely related to mammalian BHMTs but has no homology with previously described bacterial betaine methyl transferases. Glycine betaine inhibits the growth of an S. meliloti bmt mutant in low- and high-osmotic strength media, an effect that correlates with a decrease in the catabolism of glycine betaine. This inhibition was not observed with other betaines, like homobetaine, dimethylsulfoniopropionate, and trigonelline. The addition of methionine to the growth medium allowed a bmt mutant to recover growth despite the presence of glycine betaine. Methionine also stimulated glycine betaine catabolism in a bmt strain, suggesting the existence of another catabolic pathway. Inactivation of metH or bmt did not affect the nodulation efficiency of the mutants in the 102F34 strain background. Nevertheless, a metH strain was severely defective in competing with the wild-type strain in a coinoculation experiment.


2006 ◽  
Vol 72 (5) ◽  
pp. 3662-3672 ◽  
Author(s):  
M. Stiens ◽  
S. Schneiker ◽  
M. Keller ◽  
S. Kuhn ◽  
A. P�hler ◽  
...  

ABSTRACT The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.


2001 ◽  
Vol 67 (9) ◽  
pp. 3860-3865 ◽  
Author(s):  
Pieter van Dillewijn ◽  
Marı́a José Soto ◽  
Pablo J. Villadas ◽  
Nicolás Toro

ABSTRACT Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium melilotiPutA− mutant strain, that proline dehydrogenase activity is required for colonization and therefore for the nodulation efficiency and competitiveness of S. meliloti on alfalfa roots (J. I. Jiménez-Zurdo, P. van Dillewijn, M. J. Soto, M. R. de Felipe, J. Olivares, and N. Toro, Mol. Plant-Microbe Interact. 8:492–498, 1995). In this work, we investigated whether the putA gene could be used as a means of increasing the competitiveness of S. melilotistrains. We produced a construct in which a constitutive promoter was placed 190 nucleotides upstream from the start codon of theputA gene. This resulted in an increase in the basal expression of this gene, with this increase being even greater in the presence of the substrate proline. We found that the presence of multicopy plasmids containing this putA gene construct increased the competitiveness of S. meliloti in microcosm experiments in nonsterile soil planted with alfalfa plants subjected to drought stress only during the first month. We investigated whether this construct also increased the competitiveness of S. meliloti strains under agricultural conditions by using it as the inoculum in a contained field experiment at León, Spain. We found that the frequency of nodule occupancy was higher with inoculum containing the modified putA gene for samples that were analyzed after 34 days but not for samples that were analyzed later.


2003 ◽  
Vol 158 (3) ◽  
pp. 215-227 ◽  
Author(s):  
Verónica Lira-Ruan ◽  
Gautam Sarath ◽  
Robert V. Klucas ◽  
Raúl Arredondo-Peter

2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Olga A. Baturina ◽  
Victoria S. Muntyan ◽  
Alexey M. Afonin ◽  
Maria E. Cherkasova ◽  
Boris V. Simarov ◽  
...  

Sinorhizobium meliloti is a Gram-negative bacterium which fixes atmospheric nitrogen in symbiosis with Medicago spp. We report the draft genome sequence of S. meliloti strain CXM1-105, associated with nodules of Medicago sativa subsp.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Olga A. Baturina ◽  
Victoria S. Muntyan ◽  
Maria E. Cherkasova ◽  
Alla S. Saksaganskaya ◽  
Nikolay I. Dzuybenko ◽  
...  

Root nodule bacteria of Sinorhizobium meliloti species live in a symbiotic relationship with alfalfa plants. We report here the draft genome sequence of S. meliloti strain AK170, recovered from nodules of Medicago orthoceras (Kar.


Author(s):  
Jieping Wang ◽  
Yu Jia ◽  
Joann K. Whalen ◽  
Heather McShane ◽  
Brian T. Driscoll ◽  
...  

When nano-sized titanium dioxide (nano-TiO2) absorbs ultra-violet (UV-A) radiation, it produces reactive oxygen species that can be toxic to bacteria. We used the agronomically beneficial nitrogen-fixing bacterium Sinorhizobium meliloti strain 1021 as a model microorganism to detect nano-TiO2 toxicity. S. meliloti was exposed to aqueous dispersions of micrometer-sized TiO2 (micron-TiO2, 44 μm) or nanometer-sized TiO2 (nano-TiO2, 21 nm) at nominal concentrations of 0, 100, 300, 600, 900 and 1800 mg TiO2/L. There were fewer viable S. meliloti after exposure to nano-TiO2 under dark and UV-A light conditions. Nano-TiO2 was more toxic to S. meliloti with UV-A irradiation (100% mortality at 100 mg TiO2/L) than under dark conditions (100% mortality at 900 mg TiO2/L). Micron-TiO2 concentrations less than 300 mg TiO2/L had no effect on the S. meliloti viability under dark or UV-A light conditions. Exposure to 600 mg/L or more of micron-TiO2 under UV-A light could also photo-kill S. meliloti cells (100% mortality). Further study is needed to ascertain whether nano-TiO2 interferes with the growth of N2-fixing microorganisms in realistic agricultural environments.


Sign in / Sign up

Export Citation Format

Share Document