scholarly journals Improved adsorption performance of activated carbon covalently functionalised with sulphur-containing ligands in the removal of cadmium from aqueous solutions

2019 ◽  
Vol 16 (12) ◽  
pp. 7921-7932 ◽  
Author(s):  
M. Fronczak ◽  
K. Pyrzyńska ◽  
A. Bhattarai ◽  
P. Pietrowski ◽  
M. Bystrzejewski
2014 ◽  
Vol 5 (1) ◽  
pp. 34-38 ◽  
Author(s):  
T.N.A. Tengku Hasbullah ◽  
O.S. Selaman ◽  
N.A. Rosli

Dye wastewater generated is rated as the most polluting wastewater among all the industrial sectors. Adsorption using activated carbon (AC) has been proven to be effective to treat dye wastewater. In this study, jackfruit (Artocarpus heterophyllus) peel waste has been utilized for activated carbon (AC) preparation using chemical activation. This research attempts to study the factors affecting its adsorption performance. Series of experiments conducted consisted of the experiments studying the effect of initial dye concentration and also effect of adsorbent dosage. In the study, CAC showed adsorption capacity of 10.43 mg/g.


Heliyon ◽  
2021 ◽  
pp. e07191
Author(s):  
Fateme Barjasteh-Askari ◽  
Mojtaba Davoudi ◽  
Maryam Dolatabadi ◽  
Saeid Ahmadzadeh

2019 ◽  
Vol 81 (3) ◽  
Author(s):  
N. Masdiana ◽  
M. Rashid ◽  
S. Hajar ◽  
M. R. Ammar

TrikotAC filter aids is a combination of a pre-coating material PreKot™ with two adsorbents; activated carbon and lime and their characteristics were investigated in this study. TrikotAC was formulated into three different weight ratios of 5:1:94, 10:1:89 and 10:5:85, respectively. The relationship between adsorption properties and characteristics of the formulated materials particle size distribution, particle density, bulk density, and BET surface area were investigated. The results showed that the adsorption capacity for TrikotAC 10:5:85 (11.88 mg/g) was higher than for the other formulated filter aids samples, and the formulated filter aids material TrikotAC showed promising characteristic as a filter aids and adsorbent for organic compound in fabric filtration system.


2007 ◽  
Vol 253 (13) ◽  
pp. 5741-5746 ◽  
Author(s):  
C.O. Ania ◽  
B. Cabal ◽  
C. Pevida ◽  
A. Arenillas ◽  
J.B. Parra ◽  
...  

2019 ◽  
Vol 11 (20) ◽  
pp. 19-28 ◽  
Author(s):  
Mikhail M. Goldin ◽  
Gary J. Blanchard ◽  
Alexander G. Volkov ◽  
Mogely S. Khubutiya ◽  
Vladimir A. Kolesnikov ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3481
Author(s):  
Joanna Lach ◽  
Agnieszka Ociepa-Kubicka ◽  
Maciej Mrowiec

The aim of the work was to evaluate the possibility of using commercial and modified activated carbons for the removal of oxytetracycline from aqueous solutions. The kinetics and statics of adsorption as well as the effect of the activated carbon dose and solution pH on the efficiency of the oxytetracycline adsorption were analyzed. Based on the study of oxytetracycline adsorption isotherms, the activated carbons were ranked in the following order: F-300 > WG-12 > Picabiol > ROW08 > WACC 8 × 30 > F-100 > WAZ 0.6–2.4. The most effective activated carbons were characterized by large specific surfaces. The best matching results were obtained for: Redlich–Peterson, Thot and Jovanovic models, and lower for the most frequently used Freundlich and Langmuir models. The adsorption proceeded better from solutions with pH = 6 than with pH = 3 and 10. Two ways of modifying activated carbon were also assessed. A proprietary method of activated carbon modification was proposed. It uses the heating of activated carbon as a result of current flow through its bed. Both carbons modified at 400 °C in the rotary kiln and on the proprietary SEOW (Joule-heat) modification stand enabled to obtain adsorbents with higher and comparable monolayer capacities. The advantage of the proposed modification method is low electricity consumption.


Sign in / Sign up

Export Citation Format

Share Document