Field engineering application of agricultural farmland surface runoff pollution treatment by combined bioreactor and constructed wetlands

Author(s):  
H. Luo ◽  
X. Li ◽  
Y. Chen ◽  
X. Liu ◽  
K. Zhang ◽  
...  
2021 ◽  
Vol 170 ◽  
pp. 106369
Author(s):  
Kemal Gunes ◽  
Fabio Masi ◽  
Selma Ayaz ◽  
Bilal Tuncsiper ◽  
Mehmet Besiktas

2015 ◽  
Vol 72 (3) ◽  
pp. 484-490 ◽  
Author(s):  
Li Qinqin ◽  
Chen Qiao ◽  
Deng Jiancai ◽  
Hu Weiping

An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm−2. Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.


2019 ◽  
Vol 691 ◽  
pp. 1-8 ◽  
Author(s):  
Jia Liu ◽  
Hexiang Yan ◽  
Ziyuan Liao ◽  
Kui Zhang ◽  
Arthur R. Schmidt ◽  
...  

Author(s):  
Li Li ◽  
Qidi Yu ◽  
Ling Gao ◽  
Bin Yu ◽  
Zhipeng Lu

The main functions of this research are to guide the proportion of urban land that is used and the layout of the facilities on it, help understand the changes to surface runoff that are caused by land being used in urban development, and thus solve surface runoff pollution. Hangzhou City, China has been selected for the experiment, and the way in which its land is utilized as well as the grading of urban construction projects in the demonstration area are specifically analyzed. This study systematically distinguishes the definitions of impervious area based on the Sutherland equation and analyzes the impact of different impervious area subtypes on surface runoff water quality. Then, we compare the impact of impervious area subtypes with the impact of other land-use patterns on surface runoff water quality. This study shows the relationship between different land-use types and runoff water bodies: Land-use index can affect runoff water quality; Greening activities, impervious surface, and the water quality index are negatively correlated; the effective impervious area rate is positively correlated with the water quality index. The paper suggests that increasing the proportion of green spaces and permeable roads in build-up land reduces the effective impervious area (EIA) and thus controls land runoff pollution and improves runoff water quality.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 469-476 ◽  
Author(s):  
D.M. Revitt ◽  
P. Worrall ◽  
D. Brewer

A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6°C and 20°C.


2022 ◽  
Vol 304 ◽  
pp. 114272
Author(s):  
Ke Zhang ◽  
Jing Qing ◽  
Yuanye Chen ◽  
Xiaoling Liu ◽  
Xiaoying Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document