A review on the fate and transport behavior of engineered nanoparticles: possibility of becoming an emerging contaminant in the groundwater

Author(s):  
K. Dibyanshu ◽  
T. Chhaya ◽  
T. Raychoudhury
2019 ◽  
Vol 375 ◽  
pp. 290-296 ◽  
Author(s):  
Ki-Eun Kim ◽  
Yu Sik Hwang ◽  
Min-Hee Jang ◽  
Jee Hey Song ◽  
Hee Seok Kim ◽  
...  

2016 ◽  
Vol 16 (6) ◽  
pp. 1768-1775
Author(s):  
Siyang Wu ◽  
Hyeok Choi

It is important to determine the assembly configuration of engineered nanomaterials (ENMs) because assembly configuration influences their fate and transport behavior in the aquatic environment. Aggregated particles are more subject to segregation upon changes of environmental conditions (and vice versa) than agglomerated particles. As a strategic tool for investigating the time-resolved reversible segregating and assembling behavior of ENMs and thus estimating their assembly configuration, a controlled sonication process was proposed. It was hypothesized that the unique colloidal response of ENMs to sonication, with respect to changes in size, might be their intrinsic property associated with assembly configuration. As a model ENM, three different TiO2 particles with unique properties (commercial P-25 and UV 100 and home-made (HM) TiO2) were examined with programmed sonication processes under various environmental settings. When they were dispersed in water, all TiO2 particles tested obviously assembled to form much larger clusters. Size of P-25 decreased immediately upon sonication and did not change under the subsequent quiescence step while sizes of UV 100 and HM gradually decreased and then slowly recovered back to their initial sizes. The trend was generally observed in all conditions tested. The unique colloidal response of TiO2 could be explained by its properties associated with assembly configuration.


2019 ◽  
Vol 6 (8) ◽  
pp. 2311-2331 ◽  
Author(s):  
Yiming Su ◽  
Vanessa Ashworth ◽  
Caroline Kim ◽  
Adeyemi S. Adeleye ◽  
Philippe Rolshausen ◽  
...  

The increasing demand for food coupled to various environmental pressures, is increasing the importance of sustainable agricultural practices.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Guang’an He ◽  
Hong Liu ◽  
Rui Chen ◽  
Chuan Wang

Engineered nanoparticles (ENPs) possess unique properties and are employed in many sectors, and thus their release into environment remains. The potential risks of ENPs have been confirmed by an increasing number of studies that necessitate a better knowledge to the fate and transport of ENPs. One important application of ENP is photocatalysis for production of H2as energy and pollutant decomposition. Engineered photocatalytic nanoparticles (PCNPs) can also easily enter the environment with the rapid increase in its manufacture and use. This review focuses on the transport of PCNPs in water by addressing the important factors that determine the transport of PCNPs, such as particle size, pH value, ionic strength (IS), ionic valence, and organic matter. The transport of PCNPs in natural water systems and wastewater systems is also presented with an attempt to provide more abundant information. In addition, the state of the art of the detection technologies of PCNPs has been covered.


2016 ◽  
Vol 15 (4) ◽  
pp. 923-934 ◽  
Author(s):  
Mohammadreza Kamali ◽  
Ana Paula Duarte Gomes ◽  
Zahra Khodaparast ◽  
Tahereh Seifi

2020 ◽  
Author(s):  
Lungwani Muungo

Engineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safetyfor cancer patient's treatment. All-in-one covalent nanodrugs of the third generation have beensynthesized based on a poly(β-L-malic acid) (PMLA) platform, targeting human triple-negativebreast cancer (TNBC). They significantly inhibited tumor growth in nude mice by blockingsynthesis of epidermal growth factor receptor, and α4 and β1 chains of laminin-411, the tumorvascular wall protein and angiogenesis marker. PMLA and nanodrug biocompatibility and toxicityat low and high dosages were evaluated in vitro and in vivo. The dual-action nanodrug and singleactionprecursor nanoconjugates were assessed under in vitro conditions and in vivo with multipletreatment regimens (6 and 12 treatments). The monitoring of TNBC treatment in vivo withdifferent drugs included blood hematologic and immunologic analysis after multiple intravenousadministrations. The present study demonstrates that the dual-action nanoconju-gate is highlyeffective in preclinical TNBC treatment without side effects, supported by hematologic andimmunologic assays data. PMLA-based nanodrugs of the Polycefin™ family passed multipletoxicity and efficacy tests in vitro and in vivo on preclinical level and may prove to be optimizedand efficacious for the treatment of cancer patients in the future.


Sign in / Sign up

Export Citation Format

Share Document