Continuous infusion of ceftolozane-tazobactam resulted in high cerebrospinal fluid concentrations of ceftolozane in a patient with multidrug-resistant Pseudomonas aeruginosa meningitis

Author(s):  
S. Alexander Winans ◽  
Richelle L. Guerrero-Wooley ◽  
Susie H. Park ◽  
Garret Hino ◽  
Steven C. Forland
2020 ◽  
Vol 7 (11) ◽  
Author(s):  
Judith Álvarez Otero ◽  
Jose Luis Lamas Ferreiro ◽  
Ana Sanjurjo Rivo ◽  
Javier de la Fuente Aguado

Abstract We present a case of Pseudomonas aeruginosa osteomyelitis treated with surgery and antibiotic therapy with ceftolozane-tazobactam in continuous infusion at home using an elastomeric pump. We discuss the use of ceftolozane-tazobactam in continuous infusion administered at home as an effective alternative for the treatment of multidrug-resistant Pseudomonas aeruginosa osteomyelitis.


2020 ◽  
Vol 7 (12) ◽  
Author(s):  
Erin K McCreary ◽  
Karin E Byers ◽  
Carolyn Fernandes ◽  
Ellen G Kline ◽  
David P Nicolau ◽  
...  

Abstract We report a case of multidrug-resistant Pseudomonas aeruginosa meningitis treated with ceftolozane-tazobactam with concomitant therapeutic drug monitoring of plasma and cerebral spinal fluid. The data suggest that ceftolozane-tazobactam may be an option for select central nervous system infections; however, treatment decisions should be interpreted on a case-by-case basis.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S794-S795
Author(s):  
Mary Francine P Chua ◽  
Syeda Sara Nida ◽  
Jerry Lawhorn ◽  
Janak Koirala

Abstract Background Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) have limited therapeutic options for treatment. Ceftolozane/tazobactam is a newer anti-pseudomonal drug effective against resistant PA infections, however resistance against this drug has now also developed and is increasing. In this study, we explored the combination of ceftolozane/tazobactam (CT) and meropenem (MP) as a possible effective regimen against MDR and XDR PA. Methods We obtained 33 non-duplicate isolates of MDR and XDR PA grown from blood, urine and respiratory samples collected from patients admitted between 2015 and 2019 at our two affiliate teaching hospitals. MDR PA was defined as resistance to 3 or more classes of anti-pseudomonal antibiotics, and XDR PA as resistance to all but two or less classes of anti-pseudomonal antibiotics. Antimicrobial preparations of both MP and CT were made according to manufacturer instructions. Susceptibility testing was performed using the checkerboard method in accordance to CLSI guidelines (CLSI M100, 2017). The ATCC 27853 strain of PA used as control. Synergy, additive effect, indifference and antagonism were defined as FIC (fractional inhibitory concentration) indices of ≤0.5, >0.5 to <1, >1 to <4, and >4, respectively. Results Thirteen (39%) of 33 PA isolates were classified as XDR, while 20 (61%) PA isolates were MDR. All isolates were resistant to MP (MIC50 >32 ug/mL), while only 2 (6%) isolates were susceptible to CT (MIC50 64 ug/mL). A synergistic effect was seen in 9 (27.3%) of PA isolates (FIC index range 0.28 to 0.5)— 2 of which were XDR PA, and 7 were MDR PA. An additive effect was seen in 12 (36.4%), with indifference seen in 12 (36.4%) of isolates. In this study, no antagonism was seen when CT and MP were combined. Conclusion When used in combination, CT and MP can exert a synergistic effect against MDR and XDR PA. Additive effect and indifference can also be seen when both antibiotics were used. Moreover, there was no antagonism seen when both antibiotics were combined. This study shows that the use of CT and MP in combination may be an option against XDR and MDR PA infections. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 4 (9) ◽  
pp. 9799-9810
Author(s):  
Ioanna Eleftheriadou ◽  
Kleoniki Giannousi ◽  
Efthymia Protonotariou ◽  
Lemonia Skoura ◽  
Minas Arsenakis ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 478
Author(s):  
Ersilia Vita Fiscarelli ◽  
Martina Rossitto ◽  
Paola Rosati ◽  
Nour Essa ◽  
Valentina Crocetta ◽  
...  

As disease worsens in patients with cystic fibrosis (CF), Pseudomonas aeruginosa (PA) colonizes the lungs, causing pulmonary failure and mortality. Progressively, PA forms typical biofilms, and antibiotic treatments determine multidrug-resistant (MDR) PA strains. To advance new therapies against MDR PA, research has reappraised bacteriophages (phages), viruses naturally infecting bacteria. Because few in vitro studies have tested phages on CF PA biofilms, general reliability remains unclear. This study aimed to test in vitro newly isolated environmental phage activity against PA isolates from patients with CF at Bambino Gesù Children’s Hospital (OBG), Rome, Italy. After testing in vitro phage activities, we combined phages with amikacin, meropenem, and tobramycin against CF PA pre-formed biofilms. We also investigated new emerging morphotypes and bacterial regrowth. We obtained 22 newly isolated phages from various environments, including OBG. In about 94% of 32 CF PA isolates tested, these phages showed in vitro PA lysis. Despite poor efficacy against chronic CF PA, five selected-lytic-phages (Φ4_ZP1, Φ9_ZP2, Φ14_OBG, Φ17_OBG, and Φ19_OBG) showed wide host activity. The Φ4_ZP1-meropenem and Φ14_OBG-tobramycin combinations significantly reduced CF PA biofilms (p < 0.001). To advance potential combined phage-antibiotic therapy, we envisage further in vitro test combinations with newly isolated phages, including those from hospital environments, against CF PA biofilms from early and chronic infections.


Sign in / Sign up

Export Citation Format

Share Document