scholarly journals In Vitro Newly Isolated Environmental Phage Activity against Biofilms Preformed by Pseudomonas aeruginosa from Patients with Cystic Fibrosis

2021 ◽  
Vol 9 (3) ◽  
pp. 478
Author(s):  
Ersilia Vita Fiscarelli ◽  
Martina Rossitto ◽  
Paola Rosati ◽  
Nour Essa ◽  
Valentina Crocetta ◽  
...  

As disease worsens in patients with cystic fibrosis (CF), Pseudomonas aeruginosa (PA) colonizes the lungs, causing pulmonary failure and mortality. Progressively, PA forms typical biofilms, and antibiotic treatments determine multidrug-resistant (MDR) PA strains. To advance new therapies against MDR PA, research has reappraised bacteriophages (phages), viruses naturally infecting bacteria. Because few in vitro studies have tested phages on CF PA biofilms, general reliability remains unclear. This study aimed to test in vitro newly isolated environmental phage activity against PA isolates from patients with CF at Bambino Gesù Children’s Hospital (OBG), Rome, Italy. After testing in vitro phage activities, we combined phages with amikacin, meropenem, and tobramycin against CF PA pre-formed biofilms. We also investigated new emerging morphotypes and bacterial regrowth. We obtained 22 newly isolated phages from various environments, including OBG. In about 94% of 32 CF PA isolates tested, these phages showed in vitro PA lysis. Despite poor efficacy against chronic CF PA, five selected-lytic-phages (Φ4_ZP1, Φ9_ZP2, Φ14_OBG, Φ17_OBG, and Φ19_OBG) showed wide host activity. The Φ4_ZP1-meropenem and Φ14_OBG-tobramycin combinations significantly reduced CF PA biofilms (p < 0.001). To advance potential combined phage-antibiotic therapy, we envisage further in vitro test combinations with newly isolated phages, including those from hospital environments, against CF PA biofilms from early and chronic infections.

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Ana Mafalda Pinto ◽  
Alberta Faustino ◽  
Lorenzo M. Pastrana ◽  
Manuel Bañobre-López ◽  
Sanna Sillankorva

Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Rasmus Lykke Marvig ◽  
Søren Damkiær ◽  
S. M. Hossein Khademi ◽  
Trine M. Markussen ◽  
Søren Molin ◽  
...  

ABSTRACTPseudomonas aeruginosaairway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist,P. aeruginosadepends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and thePseudomonasheme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation ofP. aeruginosato the host environment. Here we investigated the within-host evolution of the transmissibleP. aeruginosaDK2 lineage. We found positive selection for promoter mutations leading to increased expression of thephusystem. By mimicking conditions of the CF airwaysin vitro, we experimentally demonstrate that increased expression ofphuRconfers a growth advantage in the presence of hemoglobin, thus suggesting thatP. aeruginosaevolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additionalP. aeruginosalineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages,phuRpromoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment ofP. aeruginosainfections in CF patients.IMPORTANCEMost bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogenPseudomonas aeruginosato cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution ofP. aeruginosa, and we found evidence thatP. aeruginosaduring long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.


2018 ◽  
Vol 115 (42) ◽  
pp. 10714-10719 ◽  
Author(s):  
Alana Schick ◽  
Rees Kassen

Chronic infection of the cystic fibrosis (CF) airway by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality for adult CF patients. Prolonged infections are accompanied by adaptation of P. aeruginosa to the unique conditions of the CF lung environment, as well as marked diversification of the pathogen into phenotypically and genetically distinct strains that can coexist for years within a patient. Little is known, however, about the causes of this diversification and its impact on patient health. Here, we show experimentally that, consistent with ecological theory of diversification, the nutritional conditions of the CF airway can cause rapid and extensive diversification of P. aeruginosa. Mucin, the substance responsible for the increased viscosity associated with the thick mucus layer in the CF airway, had little impact on within-population diversification but did promote divergence among populations. Furthermore, in vitro evolution recapitulated traits thought to be hallmarks of chronic infection, including reduced motility and increased biofilm formation, and the range of phenotypes observed in a collection of clinical isolates. Our results suggest that nutritional complexity and reduced dispersal can drive evolutionary diversification of P. aeruginosa independent of other features of the CF lung such as an active immune system or the presence of competing microbial species. We suggest that diversification, by generating extensive phenotypic and genetic variation on which selection can act, may be a key first step in the development of chronic infections.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S209-S209
Author(s):  
Melissa S Phuong ◽  
Rafael E Hernandez ◽  
Subash Sad

Abstract Background Chronic bacterial lung infections are the primary cause of morbidity and mortality in cystic fibrosis (CF). The most common CF pathogens, Pseudomonas aeruginosa (P. aeruginosa) or Staphylococcus aureus (S. aureus), are common commensal or environmental organisms that adapt to the CF lung. We sought to investigate whether adaptation from early lung colonizer to chronic pathogen alters the bacterial effects on host inflammation. Methods P. aeruginosa (n = 25) and S. aureus (n = 25) isolates from CF patients with early and chronic infections were acquired from Seattle Children’s CF. Environmental (n = 8) and clinical, non-CF P. aeruginosa (n = 8) isolates were obtained from the University of Ottawa. P. aeruginosa reference strain PA14 and PA14 transposon mutants for T3SS and flagellin were used to observe the relationship between cell death and cytokine production. We infected THP-1-derived macrophages (PMA differentiated) in vitro for 3 hours with various MOIs. We subsequently measured cell death of THP-1-derived macrophages using neutral red assay and cytokine production using ELISAs. Results Infections with PA14 mutants and non-CF P. aeruginosa isolates demonstrated that rapid cell death of THP-1-derived macrophages caused a reduction in cytokine production relative to strains that did not cause as much cell death. At 10 MOI, early P. aeruginosa isolates from CF patients induced more THP-1-derived macrophage cell death compared with chronic isolates (P < 0.0001). Chronic P. aeruginosa isolates induced greater production of TNF, IL-8, and IL-6 (P < 0.01, P < 0.0001, and P < 0.0001, respectively) compared with early strains. No difference in IL-1β production was observed. When controlling for cell death between the two groups by using heat-killed bacteria, the only difference maintained was in TNF production (P < 0.01). Between early and chronic S. aureus isolates, the one difference observed was greater IL-8 production among early isolates (P < 0.01). Conclusion Chronic P. aeruginosa isolates from CF patients induce less cell death but more TNF, IL-8, and IL-6 production compared with early isolates. This suggests that P. aeruginosa producing chronic infections induce inflammatory signals that may contribute to increased morbidity among CF patients. Disclosures All authors: No reported disclosures.


2021 ◽  
Author(s):  
Bryan Garcia ◽  
Melissa S. McDaniel ◽  
Allister J. Loughran ◽  
J. Dixon Johns ◽  
Vidya Narayanaswamy ◽  
...  

Pseudomonas aeruginosa is a common opportunistic pathogen that can cause chronic infections in multiple disease states, including respiratory infections in patients with cystic fibrosis (CF) and non-CF bronchiectasis. Like many opportunists, P. aeruginosa forms multicellular biofilm communities that are widely thought to be an important determinant of bacterial persistence and resistance to antimicrobials and host immune effectors during chronic/recurrent infections. Poly (acetyl, arginyl) glucosamine (PAAG) is a glycopolymer which has antimicrobial activity against a broad range of bacterial species, and also has mucolytic activity which can normalize rheologic properties of cystic fibrosis mucus. In this study, we sought to evaluate the effect of PAAG on P. aeruginosa bacteria within biofilms in vitro, and in the context of experimental pulmonary infection in a rodent infection model. PAAG treatment caused significant bactericidal activity against P. aeruginosa biofilms, and a reduction in the total biomass of preformed P. aeruginosa biofilms on abiotic surfaces, as well as on the surface of immortalized cystic fibrosis human bronchial epithelial cells. Studies of membrane integrity indicated that PAAG causes changes to P. aeruginosa cell morphology and dysregulates membrane polarity. PAAG treatment reduced infection and consequent tissue inflammation in experimental P. aeruginosa rat infections. Based on these findings we conclude that PAAG represents a novel means to combat P. aeruginosa infection, which may warrant further evaluation as a therapeutic.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 491
Author(s):  
Catalina Díaz-Ríos ◽  
Marta Hernández ◽  
David Abad ◽  
Laura Álvarez-Montes ◽  
Athanasia Varsaki ◽  
...  

Pseudomonas aeruginosa is one of the most critical bacterial pathogens associated with chronic infections in cystic fibrosis patients. Here we show the phenotypic and genotypic characterization of five consecutive multidrug-resistant isolates of P. aeruginosa collected during a month from a CF patient with end-stage lung disease and fatal outcome. The isolates exhibited distinct colony morphologies and pigmentation and differences in their capacity to produce biofilm and virulence potential evaluated in larvae of Galleria mellonella. Whole genome-sequencing showed that isolates belonged to a novel sequence type ST3449 and serotype O6. Analysis of their resistome demonstrated the presence of genes blaOXA-396, blaPAO, aph(3’)-IIb, catB, crpP and fosA and new mutations in chromosomal genes conferring resistance to different antipseudomonal antibiotics. Genes exoS, exoT, exoY, toxA, lasI, rhlI and tse1 were among the 220 virulence genes detected. The different phenotypic and genotypic features found reveal the adaptation of clone ST3449 to the CF lung environment by a number of mutations affecting genes related with biofilm formation, quorum sensing and antimicrobial resistance. Most of these mutations are commonly found in CF isolates, which may give us important clues for future development of new drug targets to combat P. aeruginosa chronic infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 827
Author(s):  
Emma Reece ◽  
Pedro H. de Almeida Bettio ◽  
Julie Renwick

Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF) airway disease and contributes to significant inflammation, airway damage, and poorer disease outcomes. The CF airway is now known to be host to a complex community of microorganisms, and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering the CF airway is host to a diverse community of microorganisms or ‘microbiome’ and that these microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa infection is likely influenced by these microbial relationships. This review combines the literature to date on interactions between P. aeruginosa and other airway microorganisms and the influence of these interactions on P. aeruginosa tolerance to antimicrobials.


2014 ◽  
Vol 462 (1-2) ◽  
pp. 123-128 ◽  
Author(s):  
Jawal Said ◽  
Cornelius C. Dodoo ◽  
Michael Walker ◽  
David Parsons ◽  
Paul Stapleton ◽  
...  

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S581-S582
Author(s):  
Patrick James Nolan ◽  
Tiffeny Smith ◽  
James D Finklea ◽  
Leah Cohen ◽  
Raksha Jain

Abstract Background Pseudomonas aeruginosa is a commonly isolated pathogen in adults with cystic fibrosis (CF). Antimicrobial resistance is an escalating problem due to chronic colonization and frequent antimicrobial exposure. Ceftolozane–tazobactam (C/T) and ceftazidime–avibactam (CZA) exhibit promising activity against antimicrobial-resistant organisms, including P. aeruginosa. In this study, we compared in vitro activity of C/T and CZA against P. aeruginosa isolated from respiratory cultures obtained from adult patients with CF. Methods This is a retrospective study of respiratory cultures positive for P. aeruginosa collected from adult CF patients between January 1, 2015 to November 30, 2018. The first isolate per patient per year that underwent susceptibility testing for C/T, CZA, and colistin were included in the study. All isolates underwent in-house susceptibility testing for 9 anti-pseudomonal agents according to the methodology established by the Clinical Laboratory Standards Institute (CLSI). Susceptibility testing of C/T, CZA, and colistin were performed by a reference lab. Isolates were classified into 3 drug-resistant categories using the following definition: multidrug-resistant (MDR) non-susceptible (NS) to ≥1 agent in ≥3 different antimicrobial classes, extensive drug-resistant (XDR) NS to 4 or 5 different classes, and pan drug-resistant (PDR) NS to all 6 classes except colistin. Results Forty-two P. aeruginosa respiratory isolates from 32 patients with CF were included. The overall susceptibility to C/T and CZA was 59.5% and 42.9%, respectively. Thirty-eight (90%) isolates were considered MDR with susceptibility of 55.3% to C/T and 44.7% to CZA. Among the 11 XDR isolates, susceptibility to C/T was 81.8% vs. CZA 72.7%. Susceptibility to C/T vs. CZA was also higher (37.5% vs. 25%) among the 24 PDR isolates. Conclusion Among P. aeruginosa isolated from CF respiratory cultures, C/T appears to have better in vitro activity compared with CZA, and remained true among isolates considered XDR and PDR. These results suggest using C/T while awaiting susceptibilities when standard anti-pseudomonal agents cannot be used. Future studies evaluating clinical outcomes for the treatment of pulmonary CF exacerbations are needed to assess the applicability of in vitro susceptibility data. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document