Improving Water Use Efficiency Using Sensors and Communication System for Irrigation of Greenhouse Tomato in Tulkarm, Palestine

Author(s):  
Amer Kanan ◽  
Alaa Allahham ◽  
Clemence Bouleau ◽  
Tahseen Sayara ◽  
Mohanad Qurie ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mingzhi Zhang ◽  
Zhenguang Lu ◽  
Qingjun Bai ◽  
Yushun Zhang ◽  
Xinqiang Qiu ◽  
...  

The aim of this study is to exam the effect of microsprinkler irrigation technology under plastic film (MSPF) and to evaluate the reasonable micropore group spacing and capillary arrangement density in the greenhouse. Compared with drip irrigation under plastic film (DIPF) and microsprinkling irrigation (MSI) conditions, the effects of different micropore group spacing (L1: 30 cm micropore group spacing, L2: 50 cm micropore group spacing) and capillary arrangement density (C1: one pipe for one row, C2: one pipe for two rows, and C3: one pipe for three rows) with the MSPF on photosynthetic characteristics and fruit yield of tomatoes were studied using completely randomized trial design. The results showed that under the same irrigation amount, compared with DIPF and MSI, the photosynthetic rate of tomatoes treated with L1C2 increased by 8.24% and 13.55%, respectively. The total dry matter accumulation, yield, and water use efficiency at condition of L1C2 increased by 12.16%, 19.39%, and 10.03% compared with DIPF and 26.38%, 20.46%, and 31.02% compared with MSI, respectively. The results provide evidence that the MSPF can be applied to greenhouse tomatoes. The photosynthetic rate, total dry matter accumulation, yield, and water use efficiency of tomato leaves cultivated at a micropore group spacing of 30 cm were 1.07, 1.13, 1.14, and 1.13 times higher than those of 50 cm, respectively. With the decrease in capillary arrangement density, the photosynthetic characteristics of the tomato leaves, the total dry matter accumulation, and yield of tomatoes all experienced a decline. It is recommended to use a combination of one pipe for two rows of capillaries at a 30 cm micropore group spacing as the technical parameter of greenhouse tomato with MSPF in arid and semiarid sandy loam soils.


2019 ◽  
Vol 226 ◽  
pp. 105787 ◽  
Author(s):  
Hao Liu ◽  
Huanhuan Li ◽  
Huifeng Ning ◽  
Xiaoxian Zhang ◽  
Shuang Li ◽  
...  

2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


2009 ◽  
Vol 35 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Peng-Fei CHU ◽  
Zhen-Wen YU ◽  
Xiao-Yan WANG ◽  
Tong-Hua WU ◽  
Xi-Zhi WANG

Sign in / Sign up

Export Citation Format

Share Document