Increasing Soil Organic Carbon Through Crop Diversification in Cereal–Cereal Rotations of Indo-Gangetic Plain

Author(s):  
P. K. Ghosh ◽  
K. K. Hazra ◽  
M. S. Venkatesh ◽  
C. P. Nath ◽  
Jagdish Singh ◽  
...  
2018 ◽  
Vol 64 (12) ◽  
pp. 1690-1704 ◽  
Author(s):  
Kali Krishna Hazra ◽  
Probir Kumar Ghosh ◽  
Madasur Subbabhat Venkatesh ◽  
Chaitanya Prasad Nath ◽  
Narendra Kumar ◽  
...  

Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 296 ◽  
Author(s):  
D. Das ◽  
B. S. Dwivedi ◽  
V. K. Singh ◽  
S. P. Datta ◽  
M. C. Meena ◽  
...  

Decline in soil organic carbon (SOC) content is considered a key constraint for sustenance of rice–wheat system (RWS) productivity in the Indo-Gangetic Plain region. We, therefore, studied the effects of fertilisers and manures on SOC pools, and their relationships with crop yields after 18 years of continuous RWS. Total organic C increased significantly with the integrated use of fertilisers and organic sources (from 13 to 16.03gkg–1) compared with unfertilised control (11.5gkg–1) or sole fertiliser (NPKZn; 12.17gkg–1) treatment at 0–7.5cm soil depth. Averaged across soil depths, labile fractions like microbial biomass C (MBC) and permanganate-oxidisable C (PmOC) were generally higher in treatments that received farmyard manure (FYM), sulfitation pressmud (SPM) or green gram residue (GR) along with NPK fertiliser, ranging from 192 to 276mgkg–1 and from 0.60 to 0.75gkg–1 respectively compared with NPKZn and NPK+cereal residue (CR) treatments, in which MBC and PmOC ranged from 118 to 170mgkg–1 and from 0.43 to 0.57gkg–1 respectively. Oxidisable organic C fractions revealed that very labile C and labile C fractions were much larger in the NPK+FYM or NPK+GR+FYM treatments, whereas the less-labile C and non-labile C fractions were larger under control and NPK+CR treatments. On average, Walkley–Black C, PmOC and MBC contributed 29–46%, 4.7–6.6% and 1.16–2.40% towards TOC respectively. Integrated plant nutrient supply options, except NPK+CR, also produced sustainable high yields of RWS.


2021 ◽  
Author(s):  
Bijay Sharma ◽  
Anurag J. Polana ◽  
Jingying Mao ◽  
Shiguo Jia ◽  
Sayantan Sarkar

<p>The Indo-Gangetic Plain (IGP) is one of the world’s most populated river basins housing more than 700 million people. Apart from being a major source region of aerosols, the IGP is affected by transported aerosols from the Thar Desert, forest-fires and open burning of crop waste from central India. Studies have been carried out to understand the aerosol chemical composition and optical properties in source regions of IGP but knowledge is severely lacking for receptor locations viz. eastern IGP (eIGP). To address this, the present study reports the seasonal variability of carbonaceous and ionic species in ambient PM<sub>2.5</sub> from a rural receptor location (Mohanpur, West Bengal) along with insights on aerosol acidity, its neutralization and potential source regimes. A total of 88 PM<sub>2.5</sub> samples collected during the summer, post-monsoon and winter seasons of 2018 were analyzed for SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, F<sup>-</sup>,<sup></sup>PO<sub>4</sub><sup>3-</sup>, water-soluble organic carbon (WSOC), organic carbon (OC) and elemental carbon (EC) fractions. Sulfate, nitrate and ammonium (SNA) were the dominating ionic species throughout the seasons (67-86% out of the total ionic species measured). Significant positive Cl<sup>-</sup> depletion in summer (49±20%) pointed towards influx of marine air while negative depletion in post-monsoon and winter suggested a biomass burning (BB) source, which was further supported by concentration-weighted trajectory analysis. Strong acidity was found to be highest during post-monsoon (141±76 nmol m<sup>-3</sup>), followed by winter (117±36 nmol m<sup>-3</sup>) and summer (40±14 nmol m<sup>-3</sup>) with significant differences between summer and the other seasons. Neutralization factor (N<sub>f</sub>) and equivalent charge ratio of cation to anion (R<sub>C/A</sub>) revealed that summertime aerosols were neutral in nature while those of post-monsoon and winter were comparatively acidic with NH<sub>4</sub><sup>+</sup> being the major neutralizing agent throughout the seasons. Correlations between WSOC and OC fractions (OC1, OC2, OC3 and OC4) suggested secondary formation of summertime WSOC (WSOC vs OC3: r=0.48, p<0.05) via photochemical oxidation of volatile organic carbons (VOCs) while that of post-monsoon (WSOC vs OC1, OC2, OC3: r=0.45-0.62, <em>p</em><0.05) and winter (WSOC vs OC1, OC2, OC3: r=0.58-0.68, <em>p</em><0.05), both primary and secondary pathways seem important. To elucidate the role of BB, we looked into the two components of EC i.e., char-EC (EC1-PC) and soot-EC (EC2+EC3). The percent contribution of char-EC to EC was 65±17%, 90±10% and 98±1% during summer, post-monsoon and winter, respectively. Along with this, char-EC/soot-EC ratios of 2.3±1.8, 17.6±16.4 and 50.3±18.6 during summer, post-monsoon and winter, respectively, and significant correlations of the same with the BB-tracer K<sup>+</sup> (post-monsoon: r=0.78, <em>p</em><0.001; winter: r=0.64, <em>p</em><0.01) indicated the importance of BB emissions in constraining carbonaceous aerosol profiles during post-monsoon and winter.</p>


2020 ◽  
Author(s):  
Supriya Dey ◽  
Archita Rana ◽  
Prashant Rawat ◽  
Sayantan Sarkar

<p>Light-absorbing carbonaceous aerosols such as black and brown carbon (BC and BrC) and humic-like substances (HULIS) have pronounced effects on the earth’s radiative balance and tropospheric photochemistry. In India, large heterogeneities exist for BC and organic carbon (OC) emission inventories, which necessitates regionally-representative ground-based measurements. Such measurements are spatially scattered for BC, rare for BrC and non-existent for HULIS. This severely limits a robust understanding of the optical and chemical properties of these aerosols, and consequently, their climate effects. To address this issue, the present study reports optical and chemical properties of wintertime (December 2018-February 2019) BC, BrC and HULIS at a rural receptor site in the highly polluted eastern Indo-Gangetic Plain (IGP), India. A 7 wavelength aethalometer was deployed to measure time-resolved BC mass concentration, and absorption coefficients (b<sub>abs</sub>) and Angstrom exponent (AE) of BrC. Separation of aqueous and organic BrC (BrC<sub>aq</sub> and BrC<sub>org</sub>) and HULIS fractions via a multi-step chemical extraction procedure followed by optical measurements (UV-Vis, fluorescence and FT-IR), and supplementary measurements of OC, water-soluble organic carbon (WSOC) and ionic species led to better insights into the potential chromophore composition and their relative importance in constraining aerosol optical properties.</p><p>The daily averaged BC mass concentration was 15.4±9.5 μg m<sup>-3</sup> during winter, where the biomass burning (BB) contribution was 25±5%. The diurnal profile of BC<sub>BB</sub> and BrC light absorption coefficient (b<sub>abs_BrC</sub>) showed a prominent morning peak (0700-0800 H) characterized by mixed fossil fuel and biofuel emission and a gradual increase towards night due to enhanced primary BB emission from cooking activities and lowering of the mixing depth. The regionally transported BB plume from northwestern IGP contributed substantial BC and BrC to this receptor location in the eastern end of the corridor, which was supported by concentration-weighted air mass trajectories (CWTs).</p><p>The BrC<sub>org</sub> light absorption at 365 nm (b<sub>abs_BrC_org</sub>) was almost 2 times compared to that of BrC<sub>aq</sub> (b<sub>abs_BrC_aq</sub>) (36±7.1 vs 18.3±4.3 Mm<sup>-1</sup>), which suggested a dominance of non-polar polyconjugated BrC chromophores. This was also supported by the increasing trend of water-insoluble BrC from 49±10% at 365 nm to 64±21% at 550 nm, with averaged contributions of 49±8% at 300-400 nm and 67±9% at 400-550 nm, respectively. A strong correlation between WSOC and NO<sub>3</sub><sup>- </sup>(r=0.78, p<0.01) and WSOC and NH<sub>4</sub><sup>+</sup> (r=0.63, p<0.01) indicated the possibility of nighttime secondary organic aerosol formation. A prominent fluorescence peak at ~409 nm for BrC<sub>aq </sub>confirmed the presence of HULIS, and b<sub>abs_BrC_aq</sub> was dominated by the low-polarity HULIS-n fraction. AE of individual HULIS fractions increased by 7-36% towards the more polar HULIS-a and highly-polar water-soluble organic matter (HPWSOM) compared to the less polar HULIS-n for the 300-700 nm range. Distinct FTIR peaks at 3400 cm<sup>-1</sup>, 1710 cm<sup>-1</sup> and 1643 cm<sup>-1</sup> suggested abundance of C-H, C=O and C=C functional groups, respectively, in the BrC chromophores. Overall, it appeared that the regionally transported BB plume significantly enriches BrC and HULIS in the eastern part of the IGP corridor.   </p>


2021 ◽  
Vol 102 ◽  
pp. 37-52 ◽  
Author(s):  
Hemraj Bhattarai ◽  
Lekhendra Tripathee ◽  
Shichang Kang ◽  
Chhatra Mani Sharma ◽  
Pengfei Chen ◽  
...  

Agriculture ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 261
Author(s):  
Rosa Francaviglia ◽  
Jorge Álvaro-Fuentes ◽  
Claudia Di Bene ◽  
Lingtong Gai ◽  
Kristiina Regina ◽  
...  

In the last few decades, various crop diversification strategies and management practices have been promoted to improve or at least maintain environmental quality and agroecosystem services. We conducted a data-analysis to evaluate the effectiveness of alternatives for crop diversification and environmentally friendly farming management for arable crops in four selected European pedoclimatic regions and typical cropping systems in the Atlantic, Boreal, Mediterranean North, and Mediterranean South regions. The dataset was retrieved from 38 references and included data on site-specific environmental conditions, soil tillage, crop rotation, fertilization, and final soil organic carbon content (SOC). No tillage (NT) was more effective (7%) in increasing SOC content than minimum tillage (MT) across the studied depths (from 5 to 40 cm). Conservation tillage as whole, including NT, MT, and rotational tillage (RT) positively affected SOC content in the top 10 cm (28%) in comparison with conventional tillage (CT). Compared to monoculture, longer crop rotations (3–5 years) and the introduction of legumes resulted in higher increases in SOC contents (18%), that were higher in semiarid conditions (11%) than under humid and sub-humid climates (3.2%). The effect of fertilization on SOC contents was higher in the Mediterranean North region (28%), and organic fertilization showed the highest increases (25%) compared to the control with mineral fertilization. Higher increases in SOC contents with tillage and fertilization management were found in sites with lower SOC contents in the control treatment (conventional tillage and mineral fertilization respectively). The data analysis indicated that various European arable agroecosystems benefit both from diversified cropping systems and the adoption of environmentally friendly farming management and are thereby capable to increase SOC contents.


Sign in / Sign up

Export Citation Format

Share Document