Optical and chemical properties of wintertime light-absorbing aerosols in the eastern Indo-Gangetic Plain, India

Author(s):  
Supriya Dey ◽  
Archita Rana ◽  
Prashant Rawat ◽  
Sayantan Sarkar

<p>Light-absorbing carbonaceous aerosols such as black and brown carbon (BC and BrC) and humic-like substances (HULIS) have pronounced effects on the earth’s radiative balance and tropospheric photochemistry. In India, large heterogeneities exist for BC and organic carbon (OC) emission inventories, which necessitates regionally-representative ground-based measurements. Such measurements are spatially scattered for BC, rare for BrC and non-existent for HULIS. This severely limits a robust understanding of the optical and chemical properties of these aerosols, and consequently, their climate effects. To address this issue, the present study reports optical and chemical properties of wintertime (December 2018-February 2019) BC, BrC and HULIS at a rural receptor site in the highly polluted eastern Indo-Gangetic Plain (IGP), India. A 7 wavelength aethalometer was deployed to measure time-resolved BC mass concentration, and absorption coefficients (b<sub>abs</sub>) and Angstrom exponent (AE) of BrC. Separation of aqueous and organic BrC (BrC<sub>aq</sub> and BrC<sub>org</sub>) and HULIS fractions via a multi-step chemical extraction procedure followed by optical measurements (UV-Vis, fluorescence and FT-IR), and supplementary measurements of OC, water-soluble organic carbon (WSOC) and ionic species led to better insights into the potential chromophore composition and their relative importance in constraining aerosol optical properties.</p><p>The daily averaged BC mass concentration was 15.4±9.5 μg m<sup>-3</sup> during winter, where the biomass burning (BB) contribution was 25±5%. The diurnal profile of BC<sub>BB</sub> and BrC light absorption coefficient (b<sub>abs_BrC</sub>) showed a prominent morning peak (0700-0800 H) characterized by mixed fossil fuel and biofuel emission and a gradual increase towards night due to enhanced primary BB emission from cooking activities and lowering of the mixing depth. The regionally transported BB plume from northwestern IGP contributed substantial BC and BrC to this receptor location in the eastern end of the corridor, which was supported by concentration-weighted air mass trajectories (CWTs).</p><p>The BrC<sub>org</sub> light absorption at 365 nm (b<sub>abs_BrC_org</sub>) was almost 2 times compared to that of BrC<sub>aq</sub> (b<sub>abs_BrC_aq</sub>) (36±7.1 vs 18.3±4.3 Mm<sup>-1</sup>), which suggested a dominance of non-polar polyconjugated BrC chromophores. This was also supported by the increasing trend of water-insoluble BrC from 49±10% at 365 nm to 64±21% at 550 nm, with averaged contributions of 49±8% at 300-400 nm and 67±9% at 400-550 nm, respectively. A strong correlation between WSOC and NO<sub>3</sub><sup>- </sup>(r=0.78, p<0.01) and WSOC and NH<sub>4</sub><sup>+</sup> (r=0.63, p<0.01) indicated the possibility of nighttime secondary organic aerosol formation. A prominent fluorescence peak at ~409 nm for BrC<sub>aq </sub>confirmed the presence of HULIS, and b<sub>abs_BrC_aq</sub> was dominated by the low-polarity HULIS-n fraction. AE of individual HULIS fractions increased by 7-36% towards the more polar HULIS-a and highly-polar water-soluble organic matter (HPWSOM) compared to the less polar HULIS-n for the 300-700 nm range. Distinct FTIR peaks at 3400 cm<sup>-1</sup>, 1710 cm<sup>-1</sup> and 1643 cm<sup>-1</sup> suggested abundance of C-H, C=O and C=C functional groups, respectively, in the BrC chromophores. Overall, it appeared that the regionally transported BB plume significantly enriches BrC and HULIS in the eastern part of the IGP corridor.   </p>

2021 ◽  
Author(s):  
Bijay Sharma ◽  
Anurag J. Polana ◽  
Jingying Mao ◽  
Shiguo Jia ◽  
Sayantan Sarkar

<p>The Indo-Gangetic Plain (IGP) is one of the world’s most populated river basins housing more than 700 million people. Apart from being a major source region of aerosols, the IGP is affected by transported aerosols from the Thar Desert, forest-fires and open burning of crop waste from central India. Studies have been carried out to understand the aerosol chemical composition and optical properties in source regions of IGP but knowledge is severely lacking for receptor locations viz. eastern IGP (eIGP). To address this, the present study reports the seasonal variability of carbonaceous and ionic species in ambient PM<sub>2.5</sub> from a rural receptor location (Mohanpur, West Bengal) along with insights on aerosol acidity, its neutralization and potential source regimes. A total of 88 PM<sub>2.5</sub> samples collected during the summer, post-monsoon and winter seasons of 2018 were analyzed for SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, F<sup>-</sup>,<sup></sup>PO<sub>4</sub><sup>3-</sup>, water-soluble organic carbon (WSOC), organic carbon (OC) and elemental carbon (EC) fractions. Sulfate, nitrate and ammonium (SNA) were the dominating ionic species throughout the seasons (67-86% out of the total ionic species measured). Significant positive Cl<sup>-</sup> depletion in summer (49±20%) pointed towards influx of marine air while negative depletion in post-monsoon and winter suggested a biomass burning (BB) source, which was further supported by concentration-weighted trajectory analysis. Strong acidity was found to be highest during post-monsoon (141±76 nmol m<sup>-3</sup>), followed by winter (117±36 nmol m<sup>-3</sup>) and summer (40±14 nmol m<sup>-3</sup>) with significant differences between summer and the other seasons. Neutralization factor (N<sub>f</sub>) and equivalent charge ratio of cation to anion (R<sub>C/A</sub>) revealed that summertime aerosols were neutral in nature while those of post-monsoon and winter were comparatively acidic with NH<sub>4</sub><sup>+</sup> being the major neutralizing agent throughout the seasons. Correlations between WSOC and OC fractions (OC1, OC2, OC3 and OC4) suggested secondary formation of summertime WSOC (WSOC vs OC3: r=0.48, p<0.05) via photochemical oxidation of volatile organic carbons (VOCs) while that of post-monsoon (WSOC vs OC1, OC2, OC3: r=0.45-0.62, <em>p</em><0.05) and winter (WSOC vs OC1, OC2, OC3: r=0.58-0.68, <em>p</em><0.05), both primary and secondary pathways seem important. To elucidate the role of BB, we looked into the two components of EC i.e., char-EC (EC1-PC) and soot-EC (EC2+EC3). The percent contribution of char-EC to EC was 65±17%, 90±10% and 98±1% during summer, post-monsoon and winter, respectively. Along with this, char-EC/soot-EC ratios of 2.3±1.8, 17.6±16.4 and 50.3±18.6 during summer, post-monsoon and winter, respectively, and significant correlations of the same with the BB-tracer K<sup>+</sup> (post-monsoon: r=0.78, <em>p</em><0.001; winter: r=0.64, <em>p</em><0.01) indicated the importance of BB emissions in constraining carbonaceous aerosol profiles during post-monsoon and winter.</p>


2018 ◽  
Vol 74 (1-2) ◽  
pp. 25-33 ◽  
Author(s):  
Zahid Iqbal ◽  
Muhammad Ishaq ◽  
Adnan Aslam ◽  
Wei Gao

AbstractPrevious studies show that certain physical and chemical properties of chemical compounds are closely related with their molecular structure. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. The molecular topological indices are numerical invariants of a molecular graph and are useful to predict their bioactivity. Among these topological indices, the eccentric-connectivity index has a prominent place, because of its high degree of predictability of pharmaceutical properties. In this article, we compute the closed formulae of eccentric-connectivity–based indices and its corresponding polynomial for water-soluble perylenediimides-cored polyglycerol dendrimers. Furthermore, the edge version of eccentric-connectivity index for a new class of dendrimers is determined. The conclusions we obtained in this article illustrate the promising application prospects in the field of bioinformatics and nanomaterial engineering.


2018 ◽  
Author(s):  
Xinghua Li ◽  
Junzan Han ◽  
Philip K. Hopke ◽  
Jingnan Hu ◽  
Qi Shu ◽  
...  

Abstract. Humic-like substances (HULIS) are a mixture of high molecular weight, water-soluble organic compounds that are widely distributed in atmospheric aerosol. Their sources are rarely studied quantitatively. Biomass burning is generally accepted as a major primary source of ambient humic-like substances (HULIS) with additional secondary material formed in the atmosphere. However, the present study provides direct evidence that residential coal burning is also a significant source of ambient HULIS, especially in the heating season in northern China based on source measurements, ambient sampling and analysis, and apportionment with source-oriented CMAQ modeling. Emissions tests show that residential coal combustion produces 5 to 24 % of the emitted organic carbon (OC) as HULIS carbon (HULISc). Estimation of primary emissions of HULIS in Beijing indicated that residential biofuel and coal burning contribute about 70 % and 25 % of annual primary HULIS, respectively. Vehicle exhaust, industry, and power plants contributions are negligible. Average concentration of ambient HULIS was 7.5 μg/m3 in atmospheric PM2.5 in urban Beijing and HULIS exhibited obvious seasonal variations with the highest concentrations in winter. HULISc account for 7.2 % of PM2.5 mass, 24.5 % of OC, and 59.5 % of water-soluble organic carbon, respectively. HULIS are found to correlate well with K+, Cl−, sulfate, and secondary organic aerosol suggesting its sources include biomass burning, coal combustion and secondary aerosol formation. Source apportionment based on CMAQ modeling shows residential biofuel and coal burning, secondary formation are important annual sources of ambient HULIS, contributing 57.5 %, 12.3 %, and 25.8 %, respectively.


2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


2021 ◽  
Author(s):  
Kanishtha Dubey ◽  
Shubha Verma

<p>The study investigates the chemical composition and source of aerosol origin at a semi-urban (Kharagpur–Kgp) and urban (Kolkata–Kol) region during the period February 2015 to January 2016 and September 2010 to August 2011 respectively. Major water-soluble inorganic aerosols (WSII) were determined using Ion chromatography and carbonaceous aerosols (CA) using OC–EC analyser. A multivariate factor analysis Positive Matrix Factorization (PMF) was used in resolving source of aerosols at the study locations. Seasonal analysis of WSII at Kgp and Kol indicated relative dominance of calcium at both the places followed by sodium, chloride, and magnesium ions. Non-sea salt potassium (nss–K<sup>+</sup>), a biomass burning tracer was found higher at Kol than at Kgp. Sum of secondary aerosols sulphate (SO<sub>4</sub><sup>2-</sup>), nitrate (NO<sub>3</sub><sup>-</sup>) and ammonium (NH<sub>4</sub><sup>+</sup>) was higher at Kol than Kgp with relative concentration of SO<sub>4</sub><sup>2-</sup> being higher than NO<sub>3</sub><sup>-</sup> at Kgp which was vice-versa at Kol. Examination of carbonaceous aerosols showed three times higher concentration of organic carbon (OC) than elemental carbon (EC) with monthly mean of OC/EC ratio > 2, indicating likely formation of secondary organic carbon formation. Seasonal influence of biomass burning inferred from nss–K<sup>+</sup> (OC/EC) ratio relationship indicated dissimilarity in seasonality of biomass burning at Kgp (Kol). PMF resolved sources for Kgp constituted of secondary aerosol emissions, biomass burning, fugitive dust, marine aerosols, crustal dust and emissions from brick kilns while for Kol factors constituted of burning of waste, resuspended paved road dust, coal combustion, sea spray aerosols, vehicular emissions and biomass burning.</p>


2019 ◽  
Vol 21 (6) ◽  
pp. 970-987 ◽  
Author(s):  
Srinivas Bikkina ◽  
Manmohan Sarin

In this paper, we synthesize the size distribution and optical properties of the atmospheric water-soluble fraction of light-absorbing organic carbon (brown carbon; BrC) in the continental outflow from the Indo-Gangetic Plain (IGP) in South Asia to the North Indian Ocean.


2018 ◽  
Author(s):  
Deep Sengupta ◽  
Vera Samburova ◽  
Chiranjivi Bhattarai ◽  
Elena Kirillova ◽  
Lynn Mazzoleni ◽  
...  

Abstract. Fresh and atmospherically aged biomass-burning (BB) aerosol mass is mostly comprised of black carbon (BC) and organic carbon (OC) with its light-absorbing fraction – brown carbon (BrC). There is a lack of data on the physical and chemical properties of atmospheric BB aerosols, leading to high uncertainties in estimates of the BB impact on air quality and climate, especially for BrC. The polarity of chemical compounds influences their fate in the atmosphere including wet/dry deposition and chemical and physical processing. So far, most of the attention has been given to the water-soluble (polar) fraction of BrC, while the non-polar BrC fraction has been largely ignored. In the present study, the light absorption properties of polar and non-polar fractions of fresh and aged BB emissions were examined to estimate the contribution of different-polarity organic compounds to the light absorption properties of BB aerosols. In our experiments, four globally and regionally important fuels were burned under flaming and smoldering conditions in DRI’s combustion chamber. To mimic atmospheric oxidation processes (5–7 days), BB emissions were aged using an oxidation flow reactor (OFR). Fresh and OFR-aged BB aerosols were collected on filters and extracted with water and hexane to study absorption properties of polar and non-polar organic species. Spectrophotometric measurements over the 190 to 900 nm wavelength range showed that the non-polar (hexane-soluble) fraction is 2–3 times more absorbing than the polar (water-soluble) fraction. However, an increased absorbance was observed for the water extracts of oxidized/aged emissions while the absorption of the hexane extracts was lower for the aged emissions. Comparing the absorption Ångström Exponent (AAE) values, we observed changes in the light absorption properties of BB aerosols with aging that was dependent on the fuel types. The light absorption by HUmic LIke Substances (HULIS) was found to be higher in fuels characteristic of the southwestern USA. The absorption of the HULIS fraction was lower for OFR-aged BB emissions. Comparison of the light absorption properties of different polarity extracts (water, hexane, HULIS) provides insight into the chemical nature of BB BrC and its transformation during oxidation processes.


Sign in / Sign up

Export Citation Format

Share Document