scholarly journals Low relativistic effects on the modulational instability of rogue waves in electronegative plasmas

2019 ◽  
Vol 13 (3) ◽  
pp. 237-249 ◽  
Author(s):  
Chérif S. Panguetna ◽  
Conrad B. Tabi ◽  
Timoléon C. Kofané
2013 ◽  
Vol 79 (6) ◽  
pp. 1089-1094 ◽  
Author(s):  
IOANNIS KOURAKIS ◽  
MICHAEL MC KERR ◽  
ATA UR-RAHMAN

AbstractA fluid model is used to describe the propagation of envelope structures in an ion plasma under the influence of the action of weakly relativistic electrons and positrons. A multiscale perturbative method is used to derive a nonlinear Schrödinger equation for the envelope amplitude. Criteria for modulational instability, which occurs for small values of the carrier wavenumber (long carrier wavelengths), are derived. The occurrence of rogue waves is briefly discussed.


Author(s):  
Alexander V. Babanin

Abstract Modulational instability of nonlinear waves in dispersive environments is known across a broad range of physical media, from nonlinear optics to waves in plasmas. Since it was discovered for the surface water waves in the early 60s, it was found responsible for, or able to contribute to the topics of breaking and rogue waves, swell, ice breakup, wave-current interactions and perhaps even spray production. Since the early days, however, the argument continues on whether the modulational instability, which is essentially a one-dimensional phenomenon, is active in directional wave fields (that is whether the realistic directional spectra are narrow enough to maintain such nonlinear behaviours). Here we discuss the distinct features of the evolution of nonlinear surface gravity waves, which should be attributed as signatures to this instability in oceanic wind-generated wave fields. These include: wave-breaking threshold in terms of average steepness; upshifting of the spectral energy prior to breaking; oscillations of wave asymmetry and skewness; energy loss from the carrier waves in the course of the breaking. We will also refer to the linear/nonlinear superposition of waves which is often considered a counterpart (or competing) mechanism responsible for breaking or rogue waves in the ocean. We argue that both mechanisms are physically possible and the question of in situ abnormal waves is a problem of their relative significance in specific circumstances.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Francesco Fedele ◽  
Joseph Brennan ◽  
Sonia Ponce de León ◽  
John Dudley ◽  
Frédéric Dias

Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 230-238
Author(s):  
Jebun Naher Sikta ◽  
Nure Alam Chowdhury ◽  
Abdul Mannan ◽  
Sharmin Sultana ◽  
A. A. Mamun

The formation of gigantic dust-acoustic (DA) rouge waves (DARWs) in an electron depleted unmagnetized opposite polarity dusty plasma system is theoretically predicted. The nonlinear Schrödinger equation (NLSE) is derived by employing the reductive perturbation method. It is found that the NLSE leads to the modulational instability (MI) of DA waves (DAWs), and to the formation of DARWs, which are caused by to the effects of nonlinearity and dispersion in the propagation of DAWs. The conditions for the MI of DAWs and the basic properties of the generated DARWs are numerically identified. It is also seen that the striking features (viz., instability criteria, amplitude and width of DARWs, etc.) of the DAWs are significantly modified by the effects of super-thermality of ions, number density, mass and charge state of the plasma species, etc. The results obtained from the present investigation will be useful in understanding the MI criteria of DAWs and associated DARWs in electron depleted unmagnetized opposite polarity dusty plasma systems like Earth’s mesosphere (where the D-region plasma could suffer from electron density depletion), cometary tails, Jupiter’s magnetosphere, and F-ring of Saturn, etc.


2021 ◽  
Author(s):  
Elzbieta M. Bitner-Gregersen ◽  
Odin Gramstad

Abstract Traditionally, wave parameters and their statistics has been derived from time series measurements of wave elevation. Recently, due to introduction in oceanography of stereo video camera systems, increasing attention has started to be given to spatial wave data and statistics. The present study is addressing temporal and spatial statistics of nonlinear waves giving focus to individual wave parameters. A directionally spread rogue-prone sea state observed in the North Sea is used as an example in the analysis which is based on numerical HOSM (Higher Order Spectral Method) simulations. The nonlinear order in the HOSM solver is set to M = 3, which includes the leading order nonlinear dynamical effects, including the effect of modulational instability. The following wave parameters are investigated: surface elevation, wave crests and wave troughs. The results demonstrate that the maximum spatial crest in a wave record can be up to 70% higher than the temporal crest. Further, the study indicates that the Gram-Charlier series can be used to fit the probability density function of surface elevation. It discusses applicability of the methodology based on the Gram-Charlier series for approximation of distributions of individual wave parameters of extreme and rogue waves and recommends further exploitation of this methodology. The results are discussed in the context of marine structures’ design.


2021 ◽  
Author(s):  
Joseph Mora ◽  
Justin Mibaile ◽  
Vroumsia David ◽  
Sylvere Azakine ◽  
Gambo Betchewe

Abstract In this paper, by means of the expanded Taylor series and Lindstedt-Poincar ́e perturbation methods, the coupled nonlinear Schrödinger equations (CNLSE) modeling the propagation of acoustic waves in acoustic metamaterial is obtained. Using these equations, the Modulational Instability (MI) phenomenon is observed in disturbance mode. Manakov integrable system is derived with suitable parameters and we shown that the Rogue Waves (RWs) can propagate diatomic acoustic metamaterials.


2014 ◽  
Vol 14 (3) ◽  
pp. 705-711 ◽  
Author(s):  
L. Fernandez ◽  
M. Onorato ◽  
J. Monbaliu ◽  
A. Toffoli

Abstract. The modulational instability of a uniform wave train to side band perturbations is one of the most plausible mechanisms for the generation of rogue waves in deep water. In a condition of finite water depth, however, the interaction with the sea floor generates a wave-induced current that subtracts energy from the wave field and consequently attenuates the instability mechanism. As a result, a plane wave remains stable under the influence of collinear side bands for relative depths kh &amp;leq; 1.36 (where k is the wavenumber of the plane wave and h is the water depth), but it can still destabilise due to oblique perturbations. Using direct numerical simulations of the Euler equations, it is here demonstrated that oblique side bands are capable of triggering modulational instability and eventually leading to the formation of rogue waves also for kh &amp;leq; 1.36. Results, nonetheless, indicate that modulational instability cannot sustain a substantial wave growth for kh < 0.8.


Sign in / Sign up

Export Citation Format

Share Document