scholarly journals Effect of Oral Branched-Chain Amino Acids on Serum Albumin Concentration in Heart Failure Patients with Hypoalbuminemia: Results of a Preliminary Study

2018 ◽  
Vol 18 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Yuichi Uchino ◽  
Masafumi Watanabe ◽  
Munenori Takata ◽  
Eisuke Amiya ◽  
Kensuke Tsushima ◽  
...  
2019 ◽  
pp. 155982761987404 ◽  
Author(s):  
Hamed Jafari-Vayghan ◽  
Jalal Moludi ◽  
Sevda Saleh-Ghadimi ◽  
Elgar Enamzadeh ◽  
Mir Hossein Seyed-Mohammadzad ◽  
...  

Background: Cardiac cachexia (CC) adversely affects the lifestyle of heart failure (HF) patients. The current study examined the impact of melatonin cosupplementation and branched-chain amino acids (BCAAs) on quality of life (QoL), fatigue, and nutritional status in cachectic HF patients. Methods: In this trial, 84 CC patients were randomized to melatonin, BCAAs, or coadministration (both) as intervention groups and a control group over 8 weeks. At baseline and postintervention, QoL, fatigue, and nutritional status were assessed. Results: After intervention, improvement in the overall and physical dimensions of QoL and appetite score were found to be statistically significant in the BCAAs (P < .001) and the melatonin+BCAAs (P < .001) groups compared with the placebo group. The emotional dimension score was significantly lower in the BCAAs group compared with the placebo group (P = .001). There was a statistically significant improvement in fatigue severity in all 3 intervention groups compared with the placebo group. The nutrition risk index (NRI) score increased significantly only in the melatonin group (P = .015), and there was no significant difference between the other groups (P = .804). Conclusions: Cosupplementation with BCAAs and melatonin improved QoL, fatigue status, and appetite in cachectic HF patients but did not affect NRI.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Haipeng Sun ◽  
Meiyi Zhou ◽  
Chen Gao ◽  
Kristine Olson ◽  
Ji-Youn Youn ◽  
...  

Metabolic remodeling is an integral part of heart failure. Although glucose and fatty acids metabolism have been extensively studied, little is known about the role of amino acids homeostasis in heart physiology and pathology. Branched chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential amino acids for both protein synthesis and cellular signaling. Elevated levels of BCAAs have been linked with heart failure. However, the underlying regulatory mechanism and functional significance of abnormal BCAA catabolism in heart failure have not been established. We found that genes involved in BCAA catabolism, including a key regulatory protein PP2Cm, are significantly down-regulated at mRNA as well as protein level in pressure-overload induced failing heart in mice. Furthermore, the concentrations of BCAA catabolic products branched-chain keto acids (BCKAs) are also elevated in heart tissues of post TAC mice. Interestingly, the down-regulation of BCAA catabolic genes mimics a similar expression pattern observed in fetal heart, suggesting that decreased BCAA catabolic activity is part of the metabolic remodeling in pathologically stressed heart from an adult to a fetal-like state. Genetic ablation of PP2Cm in mouse leads to defect in BCAA catabolism and accumulation of BCAAs and BCKAs in cardiac tissue and serum. PP2Cm deficient mice had lower cardiac contractility and higher susceptibility to develop heart failure under pressure overload. In addition, BCKAs treatment to isolated mitochondria resulted in lower oxygen consumption rate and ATP production. PP2Cm deficiency as well as BCKAs treatment induced oxidative stress in cardiomyocyte and antioxidant treatment ameliorated the development of heart failure in PP2Cm deficient animals. Together, these data indicated that BCAA catabolic remodeling is likely an integrated component of metabolic remodeling during heart failure. More importantly, mis-regulation of BCAA catabolism in heart promoted heart failure progression, involving direct impact on mitochondrial function and redox homeostasis in cardiomyocytes.


Author(s):  
Katsuhiko Tsunekawa ◽  
Ryutaro Matsumoto ◽  
Kazumi Ushiki ◽  
Larasati Martha ◽  
Yoshifumi Shoho ◽  
...  

Abstract Background Few nutritional markers reflect the hypermetabolic state of athletes with high levels of skeletal muscle. Although branched-chain amino acids (BCAA) play crucial roles in protein metabolism in skeletal muscle, the relationship between skeletal muscle mass and amino acid imbalances caused by the metabolism of BCAA and aromatic amino acids remains unclear. The aim of this study is to test the hypothesis that athletes with high levels of skeletal muscle mass have plasma amino acid imbalances, assessed by serum BCAA to tyrosine ratio (BTR) which can be measured conveniently. Methods The study enrolled 111 young Japanese men: 70 wrestling athletes and 41 controls. None of them were under any medications, extreme dietary restrictions or intense exercise regimens. Each participant’s body composition, serum concentrations of albumin and rapid turnover proteins including transthyretin and transferrin, BTR, and thyroid function were assessed. Results Compared to the controls, the athletes had significantly higher skeletal muscle index (SMI) (p < 0.001), and lower serum albumin concentration (p < 0.001) and BTR (p < 0.001). Kruskal–Wallis tests showed that serum albumin concentration and BTR were significantly lower in the participants with higher SMI. Serum albumin concentration and BTR were inversely correlated with SMI by multiple regression analysis (logarithmic albumin, β = − 0.358, p < 0.001; BTR, β = − 0.299, p = 0.001). SMI was inversely and transthyretin was positively correlated with serum albumin (SMI, β = − 0.554, p < 0.001; transthyretin, β = 0.379, p < 0.001). Serum concentration of free 3,5,3′-triiodothyronine (FT3) was inversely correlated with BTR, and, along with SMI and albumin, was independent predictor of BTR (SMI, β = − 0.321, p < 0.001; FT3, β = − 0.253, p = 0.001; logarithmic albumin, β = 0.261, p = 0.003). However, FT3 was not correlated with SMI or serum albumin. Serum concentrations of rapid turnover proteins were not correlated with BTR. Conclusions Increased skeletal muscle mass enhances the circulating amino acid imbalances, and is independently facilitated by thyroid hormones. Serum BTR may be a useful biomarker to assess the hypermetabolic state of wrestling athletes with high levels of skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document